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ABSTRACT

IMAGE PLANE FILTERS AND ADAPTIVE OPTICAL SYSTEMS

by

Anthony Joseph Seward

Doctor of Philosophy, Engineering

New Mexico State University

Las Cruces, New Mexico, 2005

Dr. Michael K. Giles, Chair

Shack-Hartmann sensors are the most commonly used wavefront sensors

in adaptive optics applications today. There are problems when using Shack-

Hartmann wavefront sensors in the presence of strong scintillation. This disser-

tation investigates the use of focal plane filters as wavefront sensors in adaptive

optics systems. Both simulation and experiment are used to explore the charac-

teristics of focal plane filter wavefront sensors, the conclusion being that they

are a viable alternative to Shack-Hartmann wavefront sensors.

vi



CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xxii

ACRONYMS xxiii

1 INTRODUCTION 1

PART I AN OVERVIEW OF ADAPTIVE OPTICS

2 WHAT IS ADAPTIVE OPTICS? 4

2.1 Why do I need adaptive optics . . . . . . . . . . . . . . . . . . 4

2.1.1 What are the effects of turbulence . . . . . . . . . . . . 4

2.1.2 Speckle interferometry . . . . . . . . . . . . . . . . . . . 9

2.1.3 The adaptive optics solution . . . . . . . . . . . . . . . 11

2.2 What are the components in an Adaptive optics system? . . . 11

2.2.1 Fine Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Tip-Tilt Mirror . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Wavefront corrector . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Wavefront sensor . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Wavefront calculator . . . . . . . . . . . . . . . . . . . . 13

3 DESIGNING ADAPTIVE OPTICS SYSTEMS 14

3.1 What are the goals of the design? . . . . . . . . . . . . . . . . . 14

vii



3.2 How bad is the turbulence? . . . . . . . . . . . . . . . . . . . . 16

4 CHOOSING THE COMPONENTS OF ADAPTIVE OPTICS SYSTEMS 20

4.1 How fast do I have to correct? . . . . . . . . . . . . . . . . . . . 20

4.2 Calculating the dynamic range of the tip-tilt mirror . . . . . . 23

4.3 Choosing a wavefront corrector . . . . . . . . . . . . . . . . . . 24

4.3.1 Wavefront corrector types . . . . . . . . . . . . . . . . . 24

4.3.2 Wavefront corrector constraints . . . . . . . . . . . . . . 26

4.4 How do I choose a wavefront sensor? . . . . . . . . . . . . . . 28

4.4.1 Wavefront sensor dimensions . . . . . . . . . . . . . . . 29

4.4.2 Shack-Hartmann sensor . . . . . . . . . . . . . . . . . . 33

4.4.3 Curvature sensor . . . . . . . . . . . . . . . . . . . . . . 36

4.5 What does a wavefront calculator do? . . . . . . . . . . . . . . 37

5 OTHER CONSIDERATIONS 40

5.1 What is my limiting reference? . . . . . . . . . . . . . . . . . . 40

5.1.1 Limiting magnitude of the reference . . . . . . . . . . . 41

5.1.2 Natural guide stars . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 What about laser guide stars? . . . . . . . . . . . . . . . 47

5.2 What is anisoplanatism? . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Angular anisoplanatism . . . . . . . . . . . . . . . . . . 48

5.2.2 Displacement anisoplanatism . . . . . . . . . . . . . . . 51

5.2.3 Focus anisoplanatism . . . . . . . . . . . . . . . . . . . 52

5.2.4 Conjugation at the turbulent layer . . . . . . . . . . . . 52

5.2.5 Multiconjugate adaptive optics . . . . . . . . . . . . . . 54

viii



PART II FOCAL PLANE FILTERS AND ADAPTIVE OPTICS

6 THEORY OF FOCAL PLANE FILTERS 56

6.1 What are focal plane filters? . . . . . . . . . . . . . . . . . . . . 57

6.2 Recovery of the phase . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Zernike Visibility . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Three Bin . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Wavefront calculation . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 Phase unwrapping . . . . . . . . . . . . . . . . . . . . . 74

6.4.2 Pseudo Shack-Hartmann . . . . . . . . . . . . . . . . . 76

7 COMPUTER SIMULATIONS: MATLAB 78

7.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Tip-Tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5 Wave Front Sensor Filter . . . . . . . . . . . . . . . . . . . . . . 79

7.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 COMPUTER SIMULATIONS: WAVETRAIN 84

8.1 The Simulation Layouts . . . . . . . . . . . . . . . . . . . . . . 85

8.1.1 Common Elements . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Ideal Corrector . . . . . . . . . . . . . . . . . . . . . . . 88

8.1.3 NOP Corrector . . . . . . . . . . . . . . . . . . . . . . . 90

ix



8.2 Results: Ideal Corrector . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Results: NOP Corrector . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Results: NOP Corrector and a brighter source . . . . . . . . . . 94

8.5 Results: NOP Corrector and a still brighter source . . . . . . . 94

8.6 Single frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9 EXPERIMENT 100

9.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2.1 Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2.3 Focal Plane Filter . . . . . . . . . . . . . . . . . . . . . . 105

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10 CONCLUSION 114

APPENDICES

A IDEAL CORRECTOR PLOTS 116

B NOP CORRECTOR PLOTS I 136

C NOP CORRECTOR PLOTS II 192

D NOP CORRECTOR PLOTS III 200

x



E RESCALING 208

BIBLIOGRAPHY 212

xi



LIST OF TABLES

6.1 The first six Zernike polynomials . . . . . . . . . . . . . . . 71

8.1 Summary of ideal corrector simulations . . . . . . . . . . . . 92

8.2 Summary of NOP simulations . . . . . . . . . . . . . . . . 93

8.3 Summary of NOP simulations with double power beacon . . . . 94

8.4 Summary of NOP simulations with triple power beacon. . . . . 95

9.1 Test log summary . . . . . . . . . . . . . . . . . . . . . 111

E.1 System constraints . . . . . . . . . . . . . . . . . . . . . 208

xii



LIST OF FIGURES

2.1 No turbulence . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Weak turbulence (D/r0 = 2.5) . . . . . . . . . . . . . . . . 6

2.3 Weak turbulence (D/r0 = 3.75) . . . . . . . . . . . . . . . 6

2.4 Moderate turbulence (D/r0 = 5) . . . . . . . . . . . . . . . 7

2.5 Moderate turbulence (D/r0 = 6.25) . . . . . . . . . . . . . . 7

2.6 Strong turbulence (D/r0 = 8.3) . . . . . . . . . . . . . . . 8

2.7 Strong turbulence (D/r0 = 12.5) . . . . . . . . . . . . . . . 8

2.8 Extreme turbulence (D/r0 = 25) . . . . . . . . . . . . . . . 9

2.9 System Block Diagram of an Adaptive Optics System . . . . . . 12

4.1 Strehl ratio vs. number of zones per coherence diameter. . . . . 30

4.2 RMS error in rad vs. number of zones per coherence diameter . . 31

4.3 Number of modes vs. number of zones for the same residual error 32

4.4 Shack-Hartmann and plane wave . . . . . . . . . . . . . . 34

4.5 Shack-Hartmann and aberrated wave . . . . . . . . . . . . . 34

4.6 Quad-cell detector . . . . . . . . . . . . . . . . . . . . . 35

5.1 Angular anisoplanatism. . . . . . . . . . . . . . . . . . . 49

5.2 Displacement anisoplanatism . . . . . . . . . . . . . . . . 51

xiii



5.3 Focus anisoplanatism . . . . . . . . . . . . . . . . . . . . 53

6.1 General layout for focal plane filters . . . . . . . . . . . . . 59

6.2 The focal plane filter . . . . . . . . . . . . . . . . . . . . 61

6.3 Zernike visibility . . . . . . . . . . . . . . . . . . . . . . 69

6.4 The first six Zernike polynomials . . . . . . . . . . . . . . . 71

6.5 Application of the null filter . . . . . . . . . . . . . . . . . 72

6.6 Application of the phase contrast filter . . . . . . . . . . . . 73

6.7 Zernike visibility of Zernike polynomials . . . . . . . . . . . 74

7.1 Matlab simulation flowchart . . . . . . . . . . . . . . . . . 78

7.2 145 photons per pixel per frame . . . . . . . . . . . . . . . 81

7.3 7 photons per pixel per frame . . . . . . . . . . . . . . . . 81

7.4 4.5 photons per pixel per frame . . . . . . . . . . . . . . . 82

7.5 3 photons per pixel per frame . . . . . . . . . . . . . . . . 82

8.1 Common elements in the simulations . . . . . . . . . . . . . 86

8.2 DiagnosticPlane composite system . . . . . . . . . . . . . . 87

8.3 Closed loop simulation with ideal corrector . . . . . . . . . . 88

8.4 Closed loop simulation with NOP corrector . . . . . . . . . . 90

8.5 Three Bin with diffraction WFS single frame, r0 = 12 cm, wind
speed = 5 m/s, low power beacon . . . . . . . . . . . . . . 96

8.6 Three Bin with diffraction WFS single frame, r0 = 12 cm, wind
speed = 5 m/s, double power beacon . . . . . . . . . . . . . 96

xiv



8.7 Three Bin with diffraction WFS single frame, r0 = 12 cm, wind
speed = 5 m/s, triple power beacon . . . . . . . . . . . . . 97

9.1 Experimental layout . . . . . . . . . . . . . . . . . . . . 101

9.2 Phase screen. . . . . . . . . . . . . . . . . . . . . . . . 104

9.3 Open Loop . . . . . . . . . . . . . . . . . . . . . . . . 106

9.4 Closed Loop . . . . . . . . . . . . . . . . . . . . . . . . 106

9.5 Experiment results: peak value metric . . . . . . . . . . . . 107

9.6 Experiment results: moment of inertia metric . . . . . . . . . 109

9.7 Single frame with all LCDs off . . . . . . . . . . . . . . . . 110

9.8 Single frame: Exposure length too small. . . . . . . . . . . . 112

A.1 Wrapped phase WFS, r0 = 30 cm, wind speed = 5 m/s . . . . . 116

A.2 Unwrapped phase WFS, r0 = 30 cm, wind speed = 5 m/s . . . . 117

A.3 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 5 m/s . . . . . . 117

A.4 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 5 m/s . 118

A.5 Wrapped phase WFS, r0 = 30 cm, wind speed = 10 m/s . . . . . 119

A.6 Unwrapped phase WFS, r0 = 30 cm, wind speed = 10 m/s . . . . 119

A.7 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 10 m/s . . . . . 120

A.8 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 10 m/s 120

A.9 Wrapped phase WFS, r0 = 20 cm, wind speed = 5 m/s . . . . . 121

A.10 Unwrapped phase WFS, r0 = 20 cm, wind speed = 5 m/s . . . . 122

xv



A.11 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 5 m/s . . . . . . 122

A.12 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 5 m/s . 123

A.13 Wrapped phase WFS, r0 = 20 cm, wind speed = 10 m/s . . . . . 124

A.14 Unwrapped phase WFS, r0 = 20 cm, wind speed = 10 m/s . . . . 124

A.15 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 10 m/s . . . . . 125

A.16 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 10 m/s 125

A.17 Wrapped phase WFS, r0 = 15 cm, wind speed = 5 m/s . . . . . 126

A.18 Unwrapped phase WFS, r0 = 15 cm, wind speed = 5 m/s . . . . 127

A.19 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 5 m/s . . . . . . 127

A.20 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 5 m/s . 128

A.21 Wrapped phase WFS, r0 = 15 cm, wind speed = 10 m/s . . . . . 129

A.22 Unwrapped phase WFS, r0 = 15 cm, wind speed = 10 m/s . . . . 129

A.23 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 10 m/s . . . . . 130

A.24 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 10 m/s 130

A.25 Wrapped phase WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . 131

A.26 Unwrapped phase WFS, r0 = 12 cm, wind speed = 5 m/s . . . . 132

A.27 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . . 132

A.28 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s . 133

A.29 Wrapped phase WFS, r0 = 12 cm, wind speed = 10 m/s . . . . . 134

A.30 Unwrapped phase WFS, r0 = 12 cm, wind speed = 10 m/s . . . . 134

A.31 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s . . . . . 135

xvi



A.32 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s 135

B.1 Shack-Hartmann WFS, r0 = 30 cm, wind speed = 0 m/s . . . . . 136

B.2 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 0 m/s . . . . . . 137

B.3 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 0 m/s . 137

B.4 Shack-Hartmann WFS, r0 = 30 cm, wind speed = 5 m/s . . . . . 138

B.5 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 5 m/s . . . . . . 139

B.6 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 5 m/s . 139

B.7 Shack-Hartmann WFS, r0 = 30 cm, wind speed = 10 m/s . . . . 140

B.8 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 10 m/s . . . . . 141

B.9 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 10 m/s 141

B.10 Shack-Hartmann WFS, r0 = 30 cm, wind speed = 20 m/s . . . . 142

B.11 Ideal Three Bin WFS, r0 = 30 cm, wind speed = 20 m/s . . . . . 143

B.12 Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 20 m/s 143

B.13 Shack-Hartmann WFS, r0 = 20 cm, wind speed = 0 m/s . . . . . 144

B.14 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 0 m/s . . . . . . 145

B.15 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 0 m/s . 145

B.16 Shack-Hartmann WFS, r0 = 20 cm, wind speed = 5 m/s . . . . . 146

B.17 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 5 m/s . . . . . . 147

B.18 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 5 m/s . 147

B.19 Shack-Hartmann WFS, r0 = 20 cm, wind speed = 10 m/s . . . . 148

xvii



B.20 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 10 m/s . . . . . 149

B.21 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 10 m/s 149

B.22 Shack-Hartmann WFS, r0 = 20 cm, wind speed = 20 m/s . . . . 150

B.23 Ideal Three Bin WFS, r0 = 20 cm, wind speed = 20 m/s . . . . . 151

B.24 Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 20 m/s 151

B.25 Shack-Hartmann WFS, r0 = 15 cm, wind speed = 0 m/s . . . . . 152

B.26 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 0 m/s . . . . . . 153

B.27 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 0 m/s . 153

B.28 Shack-Hartmann WFS, r0 = 15 cm, wind speed = 5 m/s . . . . . 154

B.29 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 5 m/s . . . . . . 155

B.30 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 5 m/s . 155

B.31 Shack-Hartmann WFS, r0 = 15 cm, wind speed = 10 m/s . . . . 156

B.32 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 10 m/s . . . . . 157

B.33 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 10 m/s 157

B.34 Shack-Hartmann WFS, r0 = 15 cm, wind speed = 20 m/s . . . . 158

B.35 Ideal Three Bin WFS, r0 = 15 cm, wind speed = 20 m/s . . . . . 159

B.36 Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 20 m/s 159

B.37 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . 160

B.38 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . . 161

B.39 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s . 161

B.40 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . 162

xviii



B.41 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . . 163

B.42 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s . 163

B.43 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s . . . . 164

B.44 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s . . . . . 165

B.45 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s 165

B.46 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s . . . . 166

B.47 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s . . . . . 167

B.48 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s 167

B.49 Shack-Hartmann WFS, r0 = 9 cm, wind speed = 0 m/s . . . . . 168

B.50 Ideal Three Bin WFS, r0 = 9 cm, wind speed = 0 m/s . . . . . . 169

B.51 Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 0 m/s . 169

B.52 Shack-Hartmann WFS, r0 = 9 cm, wind speed = 5 m/s . . . . . 170

B.53 Ideal Three Bin WFS, r0 = 9 cm, wind speed = 5 m/s . . . . . . 171

B.54 Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 5 m/s . 171

B.55 Shack-Hartmann WFS, r0 = 9 cm, wind speed = 10 m/s . . . . . 172

B.56 Ideal Three Bin WFS, r0 = 9 cm, wind speed = 10 m/s . . . . . . 173

B.57 Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 10 m/s . 173

B.58 Shack-Hartmann WFS, r0 = 9 cm, wind speed = 20 m/s . . . . . 174

B.59 Ideal Three Bin WFS, r0 = 9 cm, wind speed = 20 m/s . . . . . . 175

B.60 Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 20 m/s . 175

B.61 Shack-Hartmann WFS, r0 = 6 cm, wind speed = 0 m/s . . . . . 176

xix



B.62 Ideal Three Bin WFS, r0 = 6 cm, wind speed = 0 m/s . . . . . . 177

B.63 Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 0 m/s . 177

B.64 Shack-Hartmann WFS, r0 = 6 cm, wind speed = 5 m/s . . . . . 178

B.65 Ideal Three Bin WFS, r0 = 6 cm, wind speed = 5 m/s . . . . . . 179

B.66 Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 5 m/s . 179

B.67 Shack-Hartmann WFS, r0 = 6 cm, wind speed = 10 m/s . . . . . 180

B.68 Ideal Three Bin WFS, r0 = 6 cm, wind speed = 10 m/s . . . . . . 181

B.69 Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 10 m/s . 181

B.70 Shack-Hartmann WFS, r0 = 6 cm, wind speed = 20 m/s . . . . . 182

B.71 Ideal Three Bin WFS, r0 = 6 cm, wind speed = 20 m/s . . . . . . 183

B.72 Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 20 m/s . 183

B.73 Shack-Hartmann WFS, r0 = 3 cm, wind speed = 0 m/s . . . . . 184

B.74 Ideal Three Bin WFS, r0 = 3 cm, wind speed = 0 m/s . . . . . . 185

B.75 Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 0 m/s . 185

B.76 Shack-Hartmann WFS, r0 = 3 cm, wind speed = 5 m/s . . . . . 186

B.77 Ideal Three Bin WFS, r0 = 3 cm, wind speed = 5 m/s . . . . . . 187

B.78 Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 5 m/s . 187

B.79 Shack-Hartmann WFS, r0 = 3 cm, wind speed = 10 m/s . . . . . 188

B.80 Ideal Three Bin WFS, r0 = 3 cm, wind speed = 10 m/s . . . . . . 189

B.81 Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 10 m/s . 189

B.82 Shack-Hartmann WFS, r0 = 3 cm, wind speed = 20 m/s . . . . . 190

xx



B.83 Ideal Three Bin WFS, r0 = 3 cm, wind speed = 20 m/s . . . . . . 191

B.84 Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 20 m/s . 191

C.1 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . 192

C.2 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . . 193

C.3 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s . 193

C.4 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . 194

C.5 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . . 195

C.6 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s . 195

C.7 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s . . . . 196

C.8 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s . . . . . 197

C.9 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s 197

C.10 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s . . . . 198

C.11 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s . . . . . 199

C.12 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s 199

D.1 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . 200

D.2 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s . . . . . . 201

D.3 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s . 201

D.4 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . 202

D.5 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s . . . . . . 203

D.6 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s . 203

xxi



D.7 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s . . . . 204

D.8 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s . . . . . 205

D.9 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s 205

D.10 Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s . . . . 206

D.11 Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s . . . . . 207

D.12 Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s 207

xxii



ACRONYMS

ABL Airborne Laser

ADU Analog to Digital Unit

AO Adaptive Optics

DM Deformable Mirror

DSP Digital Signal Processing

EORL Electro-Optics Research Lab

FPF Focal Plane Filter

FSM Fast Steering Mirror

LCD Liquid Crystal Display

LGS Laser Guide Star

NGS Natural Guide Star

NOP North Oscura Peak

OPD Optical Path Difference

OTF Optical Transfer Function

PIB Power-In-the-Bucket

SAR Synthetic Aperture Radar

SNR Signal to Noise Ratio

xxiii



SORL Space Optics Research Lab

WFS Wave Front Sensor

xxiv



Chapter 1

INTRODUCTION

This dissertation expands on earlier work [1, 2, 3] in presenting focal plane

filters as candidates for adaptive optics wavefront sensors. The first part will

present background material on adaptive optics in general and the second part

will discuss the investigation of focal plane filters in the context of adaptive

optics.

The background material starts (chapter 2) by motivating the use of adap-

tive optics. First, the effects of a turbulent atmosphere on images are presented

and then the components of an adaptive optics system are introduced. Chap-

ter 3 discusses factors that need to be considered at the early stages of system

design, namely design goals and atmospheric characterization. The charac-

terization of the atmosphere is then used to parameterize and constrain the

choice of particular adaptive optics components in chapter 4. Part one con-

cludes (chapter 5) with a discussion of several miscellaneous factor that can

affect the final design of an adaptive optics system.

Next, the second part commences in chapter 6 with discussion and devel-

opment of the theory behind focal plane filters. Expression are derived for the

integrated intensity at the detector plane of a focal plane filter wavefront sen-

sor. There are expressions applicable to the case where most diffractive effects

are ignored, and also where diffractive effects are fully considered. Then, the

results of some preliminary simulations are given in chapter 7. These simula-

tions were limited in scope and modeled direct conjugation as if a segmented

piston corrector. Further, more detailed simulations were preformed and the

1



results presented in chapter 8. This set of simulations modeled both direct grid

level correction and a continuous facesheet deformable mirror. Lastly, chap-

ter 9 presents the results of an experiment carried out to attempt to replicate

the results of chapter 7.
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PART I

AN OVERVIEW OF ADAPTIVE OPTICS



Chapter 2

WHAT IS ADAPTIVE OPTICS?

2.1 Why do I need adaptive optics

Astronomers have recognized for centuries that the fundamental limit to

the resolving power of an optical system observing from the earth was atmo-

spheric turbulence. In the frequently cited [4, 5] passage by Sir Isaac Newton

from the first book of Optics (Proposition VIII. Problem II.)[6], he accurately

noted several aspects of the problem: the effect of turbulence is to enlarge the

‘size’ of the observed stars (in the language of modern optical design, the effect

of turbulence is to enlarge the effective point spread function of the system); the

resolution of larger telescopes is limited by turbulence; the light gathering abil-

ity of large telescopes is not affected by turbulence; the effects of turbulence are

reduced at higher altitudes (where there is less turbulence). It is an indication

of the technical complexity of the problem that it can be so accurately described

and yet require nearly two hundred and fifty years for viable solutions.

The remainder of this section gives an overview of the effects of turbulence

and presents summaries of the two solutions: speckle interferometry and adap-

tive optics.

2.1.1 What are the effects of turbulence

To start with, let’s look at the image of a point source if there were no aber-

rations. An example of such an image is shown in figure 2.1. One can see the

first Airy ring in this simulated image.
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Figure 2.1: No turbulence

If we next add some turbulence to the simulation, the image will look some-

thing like figure 2.2. This figure shows the effects of weak turbulence, in this

case an entrance pupil diameter (D) of 75 cm and a turbulence coherence di-

ameter (r0) of 30 cm for a D/r0 of 2.5. The description and calculation of r0 will

be discussed in section 3.2, but suffice it to say that a larger r0 is a good thing.

As the strength of the turbulence increases, the negative effects on image

quality become more and more apparent. Figures 2.3 through 2.8 show the

simulated effect of turbulence as we progress from mild turbulence (D/r0 =

3.75) through extreme turbulence (D/r0 = 3.75).
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Figure 2.2: Weak turbulence (D/r0 = 2.5)

Open Loop, Short Exposure
r
0
 = 20 cm, wind speed = 0 m/s

20 40 60 80 100 120

20

40

60

80

100

120
1

2

3

4

5

6

7

8

9

x 10
−11

Figure 2.3: Weak turbulence (D/r0 = 3.75)
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Figure 2.4: Moderate turbulence (D/r0 = 5)
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Figure 2.5: Moderate turbulence (D/r0 = 6.25)
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Figure 2.6: Strong turbulence (D/r0 = 8.3)
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Figure 2.7: Strong turbulence (D/r0 = 12.5)
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Figure 2.8: Extreme turbulence (D/r0 = 25)

2.1.2 Speckle interferometry

The first method for correcting the effects of atmospheric turbulence to pro-

duce any significant results was the method of speckle interferometry. In 1970

Labeyrie [7] proposed a statistical method of reconstructing the image of an

object from an image taken through turbulent aberrations. Since the dynamic

changes of a degraded image due to turbulence will vary much more rapidly

than changes in the object, it should be possible to separate the two effects with

some sort of post-processing.

The form of the ensemble averaged optical transfer function for a short ex-

posure image can be expressed analytically (see for example [8, section 8.7])

and contains more high frequency information than the long exposure opti-

cal transfer function. A simple method of removing the effects of turbulence
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might therefore involve first taking a series of short-time exposures, averaging

the results, and finally equalizing the filtering caused by the atmosphere. Since

we have assumed that the telescope is perfect and that we can accurately char-

acterize the severity of the turbulence, there is some room for improvement.

If we use a reference star — one that we can accurately represent as a point

source — to calculate an ad hoc Optical Transfer Function (OTF), we would be

relieved of the task of measuring the strength of the turbulence and we could

compensate for the optics of the telescope at the same time. The results, how-

ever would be less than ideal. The ensemble averaged short exposure OTF still

causes significant suppression of higher frequencies. Direct inverse filtering

will thus introduce a lot of noise at higher frequencies. One question might be

why not use the OTF from the reference to correct for each image? The OTF

for an individual short exposure image does contain a lot of high frequency in-

formation, but there are also significant spatial frequencies for which the OTF

is very small. The problem thus remains the same: Inverse filtering from short

exposure OTFs or their averages will introduce significant noise in the recon-

structed image.

The method proposed by Labeyrie takes advantage of the fact that the en-

semble averaged power spectrum for a short exposure image contains signifi-

cant values out to the diffraction limit of the telescope. The procedure is then

to take a series of short exposures of a reference and our object, calculate the

power spectrum for each and over the entire series of images, average the

power spectrum for the reference, and finally, use this to reconstruct the av-

eraged power spectrum of the object. We are left with a power spectrum of the

original object that has been corrected for atmospheric aberrations.
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There remain two problems with this method. First of all, since we are tak-

ing short exposure images this method is only useful for relative bright objects.

Faint objects will be lost in the noise of the detection process for short expo-

sures. Secondly, a full reconstruction of the image of the object is not possible

since we have lost all of the phase information from the image when calculat-

ing the power spectrum. While there are methods for reconstructing the phase

spectrum from higher order moments of the Fourier transform of the images

[9, 10], the restriction to bright objects stands.

2.1.3 The adaptive optics solution

Adaptive optics, on the other hand, is not limited in application to bright

objects. The overall methodology of adaptive optics is to correct for the aberra-

tions induced by the turbulence, all the while keeping the shutter to the imag-

ing camera open. By keeping the shutter open, it is possible to obtain corrected

images of faint objects.

2.2 What are the components in an Adaptive optics system?

Figure 2.9 shows the basic components of an Adaptive Optics (AO) system.

The particulars of each subsystem will be touched upon below. Here it is noted

that although the system block diagram implies that there is only incoming

light, the components of an AO system do not change for systems that also

include an outgoing beam.
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Figure 2.9: System Block Diagram of an Adaptive Optics System

2.2.1 Fine Tracker

The fine tracker is used to measure the fine mis-pointing of the system and

to command the tip-tilt mirror. Together with the tip-tilt mirror, it comprises

the heart of the tracker loop.

2.2.2 Tip-Tilt Mirror

Sometimes called the Fast Steering Mirror (FSM), the tip-tilt mirror is a flat

mirror with a large dynamic range relative to the wavefront corrector. The tip-

tilt mirror is used to correct the two lowest modes of aberrations induced by

turbulence. These modes (tilt along the two lateral axes of the system) are the

largest single contributors to the total aberrations due to turbulence.
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2.2.3 Wavefront corrector

Even after the FSM has done its job, there remains a great deal of error in

the wavefront. The wavefront corrector is tasked with reducing this error given

commands received from the other components of the AO control loop. It is the

means by which high resolution wavefront feedback is applied.

2.2.4 Wavefront sensor

In order for the wavefront corrector to know the amount of feedback to

apply, the wavefront error must first be measured. This is the task of the wave-

front sensor. The type of wavefront sensor can depend on the nature of the

turbulence to be corrected for. Different devices will place different limitations

on the performance of the AO loop when encountering different atmospheres.

2.2.5 Wavefront calculator

The job of translating the output of the wavefront sensor into something

useful to the wavefront corrector belongs to the wavefront calculator. Depend-

ing on the specifics of the wavefront sensor, wavefront corrector and atmo-

sphere, this can be simple or very intricate.
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Chapter 3

DESIGNING ADAPTIVE OPTICS SYSTEMS

This chapter will present a cursory look at some of the decision processes

involved in the first phase of AO system design. Space and scope preclude an in

depth discussion here, but hopefully a sense of the problem will be conveyed.

3.1 What are the goals of the design?

Perfect correction of the effects of turbulence is not possible. The atmo-

sphere is a thick medium but wavefront correctors will only correct at specific

planes; the resolution of wavefront correctors is not sufficient to correct the

smallest scales of turbulence; wavefront sensors that could sense at the finest

scales of turbulence would require more light than is available in almost any

situation. These are just some of the physical reasons that compromises must

be made in designing an AO system.

The first stage in the design is therefore to prioritize the performance goals

of the system. Using the three scenarios below will illustrate some of the issues.

Scenario I

When an astronomical telescope is placed on the top of a mountain, much

of the atmospheric turbulence that degrades performance is avoided. Most of

the turbulence can then be approximated as being constrained to a few distinct

layers above the telescope (e.g. [11, 12]).

Typical of astronomical applications, the AO beacon is a bright star in the

region of the star to be observed. This Natural Guide Star (NGS), though rel-
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atively bright astronomically, is not very bright in an absolute sense. This will

place a fundamental limit on the feasible dimensions of the AO system. These

limits will in turn place a limit on the ability of the system to correct for tur-

bulence. One factor of astronomical applications that relaxes the level of re-

quired correction somewhat is that the resulting corrected image can be post-

processed. When used in conjunction with AO systems, these post-processing

techniques preform better than when there is no AO system. There are two

reasons for this. First, the image corrected by an AO system has a higher start-

ing Signal to Noise Ratio (SNR) than would otherwise be the case. Second, the

Wave Front Sensor (WFS) data can be used to constrain the statistics algorithms

that form the post-processing methods[13].

The design priorities in this case would be to provide stable correction with

as few degrees of freedom as possible (more degrees of freedom require more

light with which to measure the degrees of freedom). By using few degrees of

freedom, the system will be able to operate with dimmer NGSs and therefore

correct over a larger portion of the sky. The results can then be improved by

post-processing.

Scenario II

Propagating a laser horizontally through the atmosphere poses some inter-

esting problems relative to the first scenario. First, the turbulence cannot be

approximated as being isolated in distinct layers. This increases the scintilla-

tion observed. Second, the turbulence tends to be stronger, even for horizontal

propagation at high altitudes.
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Since the beacon is somewhat within our control, the AO beacon will be

made brighter than the astronomical scenarios. This will allow for more de-

grees of freedom in the system. Since the atmosphere is thick, phase correction

at a single plane is less effective than correction at a plane conjugate to a turbu-

lent layer. This, coupled with the inherent increase in turbulence strength will

require the increased degrees of freedom. In addition, the prospect for post-

processing is not available. Thus, there are several reasons why the system

needs to have more degrees of freedom and correct to a higher level.

Scenario III

The Hawaiian islands are located in a remote section of the Pacific ocean, but

have mountain peaks that rise more than 4000 m above the surrounding terrain

(the ocean). This produces very low levels of turbulence. It turns out however,

that the turbulence layers are translated very quickly across the site[14].

In many respects this scenario is similar to the first, but there are a couple

differences. The better turbulence conditions reduce the number of degrees

of freedom needed to correct to a given Strehl ratio. The faster translation of

the turbulence across the telescope, requires a faster response time for the AO

system.

3.2 How bad is the turbulence?

From the preceding discussion, it is apparent that quantitative decisions

regarding the parameters in an adaptive optics system will be directly related

to quantitative characterization of the strength of turbulence for a given AO

application. The remainder of this section is devoted to a discussion of the
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quantization of atmospheric turbulence strength and the remaining chapters

of this part are devoted to a discussion of using this description of turbulence

strength to quantify the parameters of an AO system.

Without a doubt the most important parameter for the characterization of

an AO system is the coherence length, r0, of the aberrations. The value of r0

relative to the entrance pupil diameter determines the dimensions of the wave-

front sensor, and constrains the characteristics of the chosen wavefront cor-

rector. Additionally, r0 affects the response time required to achieve a given

level of correction. Some understanding of the calculation of r0 and its relation

to system parameters is therefore useful when designing an AO application.

The definition of r0 comes from an investigation into the maximum effective

diameter of an optical system for a given level of atmospheric turbulence. In

other words, at what entrance pupil diameter will the aberrations due to the

atmosphere begin to be the limiting factor in determining the resolution of the

system. After deriving an expression for the resolution of a system in terms of

the entrance pupil diameter and the statistics of the aberrations, Fried [15] (see

also Goodman [8, p.431]) found that turbulence would be the limiting factor

for determining resolution if the entrance pupil had a diameter larger than

r0
4
=

(

6.88
2.905

)3/5 ( 1
2π

)6/5
[

λ
2

∫ L
0 C2n (ξ) dξ

]3/5

(3.1)

or

r0 = 0.185
[

λ
2

∫ L
0 C2n (ξ) dξ

]3/5

(3.2)
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for the case where the wavefront is a plane before the turbulence is encoun-

tered1. The integrand in the denominator, C2
n, is the refractive index structure

constant2. When the input wavefront is spherical we have [16]

r0sph
4
=

(

6.88
2.905

)3/5 ( 1
2π

)6/5
L
[

λ
2

∫ L
0 C2n (ξ) ξ5/3dξ

]3/5

(3.3)

or

r0sph = r0L
[

∫ L
0 C2

n (ξ) dξ
∫ L

0 C2n (ξ) ξ5/3dξ

]3/5

. (3.4)

Here L is the distance from the entrance pupil to the source of the spherical

wave.

This is a numeric characterization of the strength of the turbulence. While

this parameter can be calculated using theoretical models of atmospheric tur-

bulence, it is also possible to measure it with a scintillometer. Note also the

dependence of r0 on mean wavelength. Any reported value of r0 is therefore

relative to an associated wavelength. Although, since it can be assumed that

the atmospheric fluctuations of refractive index are insensitive to wavelength

[8], values at other wavelengths may be calculated by using

r0λnew = r0λold

(

λnew
λold

)6/5

. (3.5)

1The constant term in front of the brackets can be expressed in several ways.
The form given here facilitates some calculations of isoplanatic angle (equa-
tion (5.20)) and full aperture wavefront variance (equation (4.12)).

2C2
n is a function of distance along the propagation path but for historical

reasons it is nevertheless referred to as the ‘refractive index structure constant.’
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Once one has an idea of the strength of the turbulence which will affect the

optical system, the next logical question is ‘how much of the degradation can I

correct?’ This is a complicated question and the answer depends upon several

factors including:

• How many zones or modes will be measured by the wavefront sensor?

In other words, how many degrees of freedom will the wavefront sensor

have?

• How quickly will the system respond?

• Can the wavefront corrector handle the amplitude of the aberrations?

Other factors such as the quality of the reference, type of wavefront sensor

and corrector, et cetera, will obviously affect the performance of the system, but

the considerations above can all be treated rather straightforwardly simply by

knowing r0 and D (the entrance pupil diameter of the optical system).

The Strehl ratio after correction will be given by

S = e−σ2
total (3.6)

where σ2
total is the sum of the correction errors in the system.
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Chapter 4

CHOOSING THE COMPONENTS OF ADAPTIVE OPTICS SYSTEMS

4.1 How fast do I have to correct?

Since the aberrations the system is trying to correct are in constant mo-

tion, the system temporal response has a direct effect on overall performance.

Aberrations are often modeled as phase screens which are translated across

the entrance pupil at the characteristic wind speed. This is a result of Taylor’s

Hypothesis [8] which states that under the right conditions turbulence can be

modeled as ’frozen’, but being carried along by a local wind. This proves to be

a reasonable model of atmospheric turbulence as it applies to optical propaga-

tion.

Because of the time required to measure and analyze the turbulence induced

aberrations and then apply a correction to a wavefront corrector, we are always

correcting for old aberrations. The system must operate quickly enough so as to

limit the errors introduced by this time lag. Before deciding how fast that might

be, it is necessary to calculate the error introduced by the system response time.

Greenwood [17] studied the problem and came up with the expression

σ2
t =

∫ ∞

0
|1 − H ( f )|2 A ( f ) d f , (4.1)

where H ( f ) is the temporal system transfer function of the entire system, and

A ( f ) is the temporal spectrum of the atmospheric turbulence. The temporal

spectrum of the turbulence depends upon the turbulence model, and for Kol-
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mogorov type turbulence it is expressed as

A ( f ) = 0.0326k2 f−8/3
∫ L

0
C2

n (z) v5/3
w (z) dx . (4.2)

Here k is the reference optical wavenumber, f is temporal frequency, vw is the

wind velocity, and z is the length along the propagation path.

Typical transfer functions for adaptive optics systems approximate a simple

RC filter and so, for the purposes of calculating the constraints on the system,

H ( f ) =
1

1 + j f
fc

(4.3)

will specify the system transfer function. This leads to a minimum 3dB cutoff

frequency of

fc = 0.586
[

1
λ2σ2

t

∫ L

0
C2

n (z) v5/3
w (z) dz

]3/5
(4.4)

in terms of maximum acceptable temporal error σ2
t .

For astronomical applications it is often possible to model the turbulence in

the upper atmosphere as one or more layers of turbulence each with a given r0

and translated with a velocity vw. In this case we can for convenience assume

that the wind velocity profile for each layer is constant and then equation (4.4)

becomes

fc =
0.426 · vw

r0
(

σ2
t
)3/5 (4.5)

for each turbulent layer. For order of magnitude calculations, add the contri-

bution of each layer:

fc =
.426
(

σ2
t
)3/5

layers

∑
l=1

vwl
r0l

. (4.6)
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Once a value for fc has been calculated for a given σt, there is a reasonably

simple formula for finding the new value of fc in terms of a new σt, assuming

that the site parameters (r0l and vwl) do not change. Collecting the constant

parameters

fc1 =
1

σ6/5
t1

A (4.7)

fc2 =
1

σ6/5
t2

A (4.8)

and combining the two equations

fc1σ6/5
t1

= fc2σ6/5
t2

(4.9)

yields the relatively simple result

fcnew = fcold

(

σtold

σtnew

)6/5
. (4.10)

Conversely, the effect on the error due to a change in system cutoff frequency

(with the site parameters remaining unchanged) is

σtnew = σtold

( fcold

fcnew

)5/6
. (4.11)
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4.2 Calculating the dynamic range of the tip-tilt mirror

subject]tip-tilt In atmospheric adaptive optics, tip-tilt aberrations are by far

the dominant aberrations to be corrected. Since tip-tilt is so large it is often cor-

rected in a separate system and will therefore be characterized by itself. By cor-

recting tip-tilt separately it is possible to considerably relax the specifications

of the wavefront corrector used on the remaining modes. Another considera-

tion is that laser guide star references are insensitive to tip-tilt (see p. 47). As

a consequence wavefront sensors using laser guide stars as a reference will not

be able to measure tip-tilt without making use of special techniques: another

reason for which tip-tilt correction is normally assigned to a separate system.

It is possible to characterize the statistics of the turbulence across the aper-

ture both with and without tip-tilt. Roddier [18] investigated the statistics of

Kolmogorov turbulence as a function of Zernike modes. The mean square

phase difference for the two end points of a pupil diameter are

σ2
tt = 6.88

(D
r0

)5/3
. (4.12)

Two standard deviations will cover 95.5% of possible cases. We then have

∆tt = 5.25
(D

r0

)5/6
rad . (4.13)

It would be convenient if

∆tt = 6.28
(D

r0

)5/6
rad ≈ 2π

(D
r0

)5/6
rad (4.14)
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because we would then have

∆tt = λ

(D
r0

)5/6
m . (4.15)

This would be the result if we had used 2.4 standard deviations above — in

the process covering 98.4% of cases — rather than the common two standard

deviations. Using this estimate for the tip-tilt deflection gives even more design

safety and at the same time provides a convenient expression.

4.3 Choosing a wavefront corrector

4.3.1 Wavefront corrector types

There are many types of wavefront correctors available for adaptive optics

systems. The following short descriptions are more to introduce terminology

than to provide a detailed treatment.

DISCRETE ACTUATOR DEFORMABLE MIRROR

This type of corrector is formed by bonding an array of discrete actuators

(thus the name) to the back of a reflective surface. The actuators act for the most

part independently. There is some coupling between actuators, however, due

to the finite elasticity of the reflective surface and finite actuator spacing.
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BIMORPH MIRROR

A bimorph mirror is constructed by bonding a thin metal mirror on top of

a conducting electrode layer, on top of a piezoelectric layer, with an array of

discrete electrodes bonded on the back. A voltage applied to the discrete elec-

trodes will cause a local curvature on the mirror. The radius of this curvature

has the form[5, p.191]

R =
V · d

t2 (4.16)

where V is the applied voltage, d is a parameter of the piezoelectric mate-

rial, and t is the thickness of the piezoelectric layer plus the mirror layer. The

bimorph mirror is well matched with the curvature sensor described in sec-

tion 4.4.3.

SEGMENTED MIRROR

Segmented mirrors are formed by assembling a large array of tiny mirrors

over the area to be corrected. Each of these mirrors corrects for the local piston

at a particular location. It does so by moving in or out based on commands

from the wavefront controller. There is no attempt to deal with the discontinu-

ity between adjacent segments. There is a natural correspondence between a

segmented mirror and an interferometric wavefront sensor.
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LIQUID CRYSTAL DISPLAY

In many ways a Liquid Crystal Display wavefront corrector can be consid-

ered a special case of a segmented mirror. The main differences are that with an

Liquid Crystal Display (LCD) there are no mechanical moving parts and there

are chromatic effects. Another important consideration is that LCDs are much

cheaper than segmented mirrors.

4.3.2 Wavefront corrector constraints

The two main concerns regarding the wavefront corrector are that it can

respond quickly enough and that it can correct all of the aberrations detected.

The former applies to system response time, which is treated in section 4.1,

while the latter is treated here. There are two parameters of importance when

considering how well the wavefront corrector can accomplish its task, namely

its dynamic range and its resolution.

The dynamic range describes the largest difference in phase across the wave-

front corrector aperture which the system will be expected to correct and the

resolution defines the difference in phase between two actuators or pixels.

FULL APERTURE STROKE

Assuming that tip-tilt has been corrected by the system, the residual mean

square phase difference has a maximum value of (again from Roddier [18])

σ2
ap = 0.34

(D
r0

)5/3
. (4.17)
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Again using a tolerance of 2.4 standard deviations, we have

∆ap = 1.4
(D

r0

)5/6
rad (4.18)

which can be expressed as

∆ap = .22 · 2π

(D
r0

)5/6
rad. (4.19)

Expressing this result in terms of wavelength gives

∆ap = .22 ·λ

(D
r0

)5/6
m (4.20)

or equivalently

∆ap = .22 ·∆tt m . (4.21)

INTER-ACTUATOR STROKE

For separation distances up to a third of the entrance pupil diameter, the

phase structure function after tip-tilt correction can be approximated as (from

the plots in Roddier [18])

D (~r) ≈ 0.9~r
D

(D
r0

)5/3
. (4.22)

If there are N0 actuators on the active portion of the wavefront corrector, then

~r (the distance between two actuators) is

~r ≈ D√
N0

. (4.23)
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This leads to

σ2
IA =

.9√
N0

(D
r0

)5/3
(4.24)

and once again we take 2.4 standard deviations to obtain

∆IA =
2.28
4√N0

(D
r0

)5/6
rad (4.25)

for the inter actuator stroke. Following the same procedure that was used

above for the full-aperture tip-tilt we proceed from

∆IA =
.36 · 2π

4√N0

(D
r0

)5/6
rad (4.26)

to

∆IA =
.36 ·λ

4√N0

(D
r0

)5/6
m (4.27)

and finally

∆IA =
.36

4√N0
∆tt m. (4.28)

4.4 How do I choose a wavefront sensor?

Since the atmospheric aberrations are encoded as a phase modulation of

the incoming light field, a device is needed to extract this phase information

before detection. There are several methods available for doing this. The most

common uses a Shack-Hartmann lens array to sample the pupil plane while

the next most common records two images of the reference; one inside and

one outside the focal plane. The wavefront sensors deriving from these two

methods are referred to respectively as Shack-Hartmann wavefront sensors and
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curvature wavefront sensors. This dissertation presents another method which

uses phase and amplitude filters in the image plane.

4.4.1 Wavefront sensor dimensions

Before discussing the effect of r0 on the dimensions of the wavefront sen-

sor, a distinction should be made between zonal and modal wavefront sensing.

In a modal wavefront sensor the incoming wavefront is reconstructed in terms

of the Zernike modes across the entrance pupil of the system, whereas in a

zonal wavefront sensor the reconstructed wavefront is spatially sub-divided

into ’zones’ and the phase is given for each zone. The number of modes or

zones in the reconstructed wavefront then limits the accuracy of the reconstruc-

tion for a given turbulence strength.

Since there is a limited amount of light reaching the system, the degrees

of freedom in the wavefront sensor should not be too great. Otherwise, any

theoretical gains in performance will be offset by sensor errors due to noise.

For a zonal wavefront sensor, the mean square residual wavefront error in

terms of zone size (rs) is given by Wincour [19]

σ2
zonal = 0.31583

( rs
r0

)5/3
. (4.29)

The zone size is related to the entrance pupil diameter by

rs =
D√
Z

, (4.30)
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where Z is the number of zones. This yields

σ2
zonal = 0.31583

( Z
N0

)−5/6
, (4.31)

where N0 = (D/r0)
2, or the ratio of the entrance pupil area to the area of the

turbulence equivalent aperture.
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Figure 4.1: Strehl ratio vs. number of zones per coherence diameter

A plot of the Strehl ratio due to this error is given in figure 4.1. The Strehl

ratio is plotted against Z/N0. It can be seen that there is probably no justifica-

tion for the number of zones to exceed about 4N0 and in many cases it would
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probably suffice that the number of zones be equal to N0. A plot of the error

itself appears in figure 4.2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z/N
0

rm
s 

ph
as

e 
er

ro
r

Figure 4.2: RMS error in rad vs. number of zones per coherence diameter

For modal correction the residual error is given as [20]

σ2
modal = 0.2944M−

√
3/2
(D

r0

)5/3
(4.32)

or

σ2
modal = 0.2944M−

√
3/2N0

5/6 , (4.33)

Where M is the number of modes. Combining equation (4.31) and equation (4.33)

gives an expression for the minimum number of modes to correct in order to

31



produce the same level of correction obtained using a given number of zones:

M = ceil
(

0.92217Z5/3
√

3
)

. (4.34)

Here ceil() is a function that always rounds up to the next higher integer.
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Figure 4.3: Number of modes vs. number of zones for the same residual error

This expression is plotted in figure 4.3 along with the expression M = Z

and it can be seen that for the lower numbers of zones and modes there are

slightly more zones required, but that the number of modes or zones required

for a given level of correction is essentially equal.
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For an adaptive optics system of any size, the wavefront sensor will be a

zonal sensor since direct detection of the higher order Zernike modes is not

evident. Sometimes the sensor is actually of mixed type, as is the case when a

Shack-Hartmann (zonal) sensor is used in conjunction with a quad-cell detector

to directly measure the sub-aperture tip-tilt. For the most part, in what follows

it will be assumed that the wavefront sensor is, for all intents and purposes,

zonal.

Although it was stated above that there was probably no reason for choos-

ing more than 4N0 degrees of freedom in the wavefront sensor there is a good

reason for choosing fewer. If there are too many degrees of freedom, then there

will not be enough photons in the system to overcome noise (see 5.1.1). For

this reason N0 is usually chosen as the number of degrees of freedom in the

wavefront sensor.

4.4.2 Shack-Hartmann sensor

The basic function of a Shack-Hartmann wavefront sensor is to sample small

regions of the pupil and form images of the reference from these sub-pupils.

The local tip-tilt over a sub-pupil can then be calculated from the lateral dis-

placement of the image of the reference. The local tip-tilts can then be used

together to calculate a piecewise linear reconstruction of the wavefront across

the entire pupil.

To better understand the process, first look at figure 4.4. This figure shows

the effect of placing a lenslet array in the image plane of an aberration free

pupil. The result is a mosaic of regularly spaced images of the reference. If,

however, the field at the pupil contains aberrations (see figure 4.5) then the ref-
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Figure 4.4: Shack-Hartmann and plane wave

Figure 4.5: Shack-Hartmann and aberrated wave
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erence images in the mosaic are aberrated. Since each sub-pupil (the sub-part

of the pupil as seen by each lens in the lenslet array) is only affected by the aber-

rations local to itself, each of the multiple reference images contain information

relating to the aberrations across the corresponding sub-pupil. If the lateral

displacement of each reference image relative to its position for an unaberrated

pupil is calculated, it is possible to calculate the tip-tilt across the sub-pupil. If

these are then combined for all of the sub-pupils, the result is a piecewise linear

fit to the wavefront over the entire pupil.

Figure 4.6: Quad-cell detector

One way to calculate the displacement of the reference images is to use

a quad cell detector as in figure 4.6. The displacement of the image in the
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x-axis direction is calculated by subtracting the irradiance in quadrant 1 from

the irradiance in quadrant 2, normalized by the sum of the two. The same

process is used to calculate the displacement along the y-axis.

The more common and more accurate method is to project the mosaic of

reference images onto a pixellated detector and then calculate the centroids

xcent = ∑
∀x,∀y

I(x, y) · x

ycent = ∑
∀x,∀y

I(x, y) · y
(4.35)

for each image. This method is more robust but also more computationally

intensive.

4.4.3 Curvature sensor

Another common wavefront sensor, and one gaining popularity, is the cur-

vature wavefront sensor. This type of wavefront sensor is based on the fact that

by comparing two images, one in front of an image of the pupil and one behind

an image of the pupil, it is possible to calculate the aberrations across the pupil.

This is accomplished through the irradiance transport equation [14, p.30]

∂I
∂z = − λ

2π

(

∇I ·∇φ + I∇2φ
)

. (4.36)

From this equation, it appears that the computation of the wavefront aberra-

tions is quite a daunting task and probably not useful in an adaptive optics sce-

nario. The curvature sensor capitalizes on some symmetries of equation (4.36)

to make the problem tractable.

36



When coupled with a bimorph mirror, whose response parallels equation (4.36),

the contrast between the intra-focal and extra-focal images is proportional to

the voltage to apply to the bimorph mirror and can be expressed as

I1 (~r) − I2 (−~r)
I1 (~r) + I2 (−~r) =

f ( f − ∆z)
∆z

Vdxy
t2 . (4.37)

Here t is the mirror thickness, V is the voltage to be applied and d is a coefficient

of the piezoelectric tensor. f is the effective focal length of the system that forms

the pupil around which the intra- and extra-focal images are taken and ∆z is

the distance from the pupil plane to the intra- and extra-focal planes.

4.5 What does a wavefront calculator do?

The wavefront calculator, or wavefront computer or wavefront reconstruc-

tor, basically takes wavefront sensor measurements as input and computes

commands to the wavefront corrector as output. The methods which it uses

to do so are varied, sometimes highly dependent on the types of the wavefront

sensor and wavefront corrector

For systems in which the wavefront sensor and corrector are closely matched,

the wavefront calculator can in theory be trivial. Cases in which this is true are,

for example a curvature sensor and a bimorph mirror or an interferometric sen-

sor and a piston type corrector.
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MODAL FILTERING

Once the output of the wavefront sensor is collected, it needs to be con-

verted into commands for the wavefront corrector. This process can be repre-

sented in three conceptual steps. First the output of the wavefront sensor is

represented as an output vector of a linear system. Second the inversion of this

system gives a vector of commands to send to the wavefront corrector. Option-

ally the inverse system can be passed through a modal filter so as to maximize

the signal to noise ratio.

For both the Shack-Hartmann sensor and the Curvature sensor, it is possible

to describe the wavefront sensing process as the linear system

~s = D~c . (4.38)

In this equation~s is the output of the wavefront sensor. The term~c at first glance

might be thought of as the incoming wavefront sampled at certain points. While

this vector is directly related to the incoming wavefront, it is more instructive

to see how ~c relates to the wavefront corrector. Each element in ~c corresponds

to an actuator or pixel in the wavefront corrector. It is now possible to define

D in the following way: apply a unit deflection to element i of the wavefront

corrector; now read the output from the wavefront sensor; this output vector is

then used as column i of the matrix D. What we have just defined is, in effect, a

heuristic for measuring the transformation matrix D used to take a description

of the incoming wavefront in the ~c coordinate system and convert it to one in

the~s coordinate system.
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It would seem that a more intuitive description would be

~c = E~s , (4.39)

or a system description which translates the output of the wavefront sensor

into inputs to the wavefront corrector. After all, that is the operation which we

wish to perform. The above discussion shows, however, that D can be directly

measured in such a way that errors in control of the wavefront corrector are

minimized; something which is not true of the system in equation (4.39)

It is obvious that if D is invertible then D−1 is just E. If this is not the case

— D is maybe not square, e.g. fewer correction actuators than sensor zones —

then the generalized inverse

D+ =
(

DTD
)−1

DT (4.40)

is computed.

Gendron [21](also Gendron and Léna [22]) showed that the performance of

an adaptive optics system could be improved if the commands to the wave-

front corrector were passed through a conditioning filter. This filter makes use

of knowledge of the statistical characteristics of the atmosphere to ensure that

the commands to the wavefront controller are sensible. The overall effect is to

reduce the harm done by noise in the detection of some of the higher turbulence

modes.
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Chapter 5

OTHER CONSIDERATIONS

5.1 What is my limiting reference?

In astronomical adaptive optics there are two types of point sources that are

used. The first, and most common, is a bright star that is close to the object

to be observed. The second is an artificial ‘star’ created by aiming a laser at a

point near the object to be observed. The sodium atoms high in the atmosphere

are put into an excited state by the laser. As the atoms return to their unexcited

state, they radiate and produce an artificial ‘star’ in the neighborhood of the

observed object.

The reference must be near the object so that light from the reference and

object undergo the same aberrations. If the aberrations seen by the reference

are significantly different from those seen by the object, the adaptive optics

system will be correcting the wrong aberrations from the point of view of the

object. This could easily be worse than no correction at all. Just how close must

the reference be to the object? This is determined by the strength of the turbu-

lence as measured by the optical coherence length, r0, defined by Fried. This

parameter is probably the most useful quantity from the theoretical analysis of

turbulence. It will be useful in specifying the dimensions of many components

in the system.
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5.1.1 Limiting magnitude of the reference

Before moving on to discussions of the characteristics of laser guide stars

and natural guide stars, it will be useful to determine just how weak the radi-

ation of the reference can be. Since we are dealing with astronomical applica-

tions the strength of the reference will be expressed in terms of stellar magni-

tude.

The magnitude of a celestial object in terms of its spectral photon flux den-

sity is

M = −2.5
(

log10 Ep,λ − bλ

)

. (5.1)

In this equation, bλ is a normalizing constant for the observation band and

Ep,λ is the spectral photon flux density whose units are photons/s · cm2 · Å. The

subscript λ here indicates that E is a spectral quantity while the subscript p in-

dicates the it is in terms of photons. This notation will be used in the following

discussion. When calculating the limiting magnitude for a wavefront sensor,

the area will be given in terms of the entrance pupil diameter. Since this di-

ameter is most conveniently given in units of meters, it is convenient to define

magnitude as (the 4 accounts for the conversion from m2to cm2

M = −2.5
(

log10 Ep,λ − bλ − 4
)

(5.2)

where the units of Ep,λ are now photons/s ·m2 · Å.

If we define the total noise (in units of photons per frame) in the system

as seen at the end of the wavefront sensor detection process as σtotp , then the
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minimum spectral flux density can be expressed as

Ep,λmin = S∗
p,λ · σtotp . (5.3)

In this equation S∗
p,λ is a kind of minimal signal to noise ratio. It is different from

a normal signal to noise ratio in that its units for the signal (photons/s ·m2 · Å)

are very different from the units for the noise (photons). In order to reconcile

this and to find an expression for S∗
p,λ we start by making use of one of the

properties of a wavefront sensor. The measurement noise for a given type of

wavefront sensor can be expressed in terms of the input signal to noise ratio.

Inverting this equation yields an expression for the minimum signal to noise

ratio required to measure the incoming wavefront to within a given error. For

example, a Shack-Hartmann sensor using quad-cell detectors has a measure-

ment error expressed in Tyson [5] as

σ2
WFSS−H

=
0.0875 ·π2

SNR2 . (5.4)

This leads to

SNRS−H (σWFS) =
0.2958 ·π

σWFS
(5.5)

as an expression for the SNR.

This SNR is for an entire observation band. If the input signal spectrum

were flat, the spectral SNR would become just

SNR (σWFS)
∆λ

, (5.6)
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with ∆λ the bandwidth in Angstroms. In order to accommodate other input

spectra we use
SNR (σWFS)

fλ∆λ
(5.7)

where fλ is the normalized input spectrum.

Since σtotp is evaluated after having traversed the entire system to the detec-

tor of the wavefront sensor, while Ep,λ is evaluated before it has encountered

any part of the system, we need to account for the optical transmission through

the system. Thus we have
SNR (σWFS)
Tsysλ

· fλ∆λ
. (5.8)

Similarly we need to divide by the frame rate, t f , for

S∗
p,λ =

SNR (σWFS)
t f · Tsysλ

· fλ∆λ
, (5.9)

and account must be taken for the area of the wavefront sensor zone (at the

entrance pupil):

S∗
p,λ =

SNR (σWFS)
πD2
4Nz

· t f · Tsysλ
· fλ∆λ

, (5.10)

where D is the entrance pupil diameter. We now have

S∗
p,λ =

SNR (σWFS)
β

(5.11)

where

β =
πD2

4Nz
· t f · Tsysλ

· fλ∆λ . (5.12)

So, S∗
p,λ is the minimum SNR required to achieve a wavefront sensor measure-

ment error of σWFS after SNR has been normalized by a factor β. This β converts
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from photons per frame at the wavefront sensor to spectral photon flux density

in front of the entrance pupil. Lastly, the noise is the combination of photon

noise and the noise due to the detector system of the wavefront sensor:

σtotp = σ2
ph +

(

σsyse−

Rph−e−λ

)2

, (5.13)

In this expression, σsyse− is the total system noise expressed in units of electrons

per frame and Rph−e−λ
is the spectral photo-electric responsitivity. Using these

results in equation (5.3) gives

Ep,λmin = S∗
p,λ

[

σ2
ph + σ2

sysp

]1/2

= S∗
p,λ

[

βEp,λmin + σ2
sysp

]1/2

1
S∗

p,λ
2 E2

p,λmin
= βEp,λmin + σ2

sysp

1
S∗

p,λ
E2

p,λmin
= SNR (σWFS) Ep,λmin + S∗

p,λσ2
sysp

(5.14)

which, after application of the quadratic equation, yields the expression

Ep,λmin =
S∗

p,λ
2
(

SNR (σWFS) +
√

SNR2 (σWFS) + 4 σ2sysp

)

(5.15)

for the minimum spectral photon flux density. Applying this result to the equa-

tion for stellar magnitude (equation (5.2)) produces an equation for the mini-
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mum reference magnitude, namely

Mlimit = −2.5
(

log10

[

S∗
p,λ
2
(

SNR (σ) +
√

SNR2 (σ) + 4 σ2sysp

)

]

− bλ − 4
)

(5.16)

Throughout this derivation several of the terms in these expressions have re-

mained in a spectral form, that is, wavelength dependent. If we wanted to

calculate the exact limiting magnitude for a given set of conditions, it would

be necessary for us to take the wavelength dependence of the source into con-

sideration. This, however would mean that the final calculation was only valid

for a particular reference spectrum. This is not practical as two references could

have the same magnitude over a given band yet not have the same spectrum

over the band. We are thus forced to somewhat simplify the analysis. First, as-

sume that fλ is one over the band, second we will take Tsys to be a constant. In

addition the responsivity in equation (5.13) will become wavelength indepen-

dent. If the effective values used for these parameters maintain the same area

over the bandwidth ∆λ as before then the overall photon flux density should

not be too adversely affected by these simplifications.

As an example, let’s take a Shack-Hartmann wavefront sensor with a quad-

cell detector for each sub-aperture. If we settle on an error value of 0.416 radi-

ans, then the SNR is 2 (this would correspond to a Strehl ratio of 80% if other

errors are negligible). Suppose also that the system error is ten photons per

frame and that we operate in the visible band (where bλ is approximately 3),

and equation (5.16) will simplify to

Mlimit = −2.5
(

log10
22
β

− 7
)

(5.17)
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or

Mlimit = −2.5
(

log10
22

πD2
4Nz

· t f · Tsys ·∆λ
− 7
)

. (5.18)

Using the system on a telescope with a 1m diameter, a frame rate of 10ms, a

bandwidth of 5000Å, 16 sub-pupils and a transmission of 20% yields a theoret-

ical limiting magnitude of 13.4.

5.1.2 Natural guide stars

A NGS system has many advantages over a system employing laser guide

stars. First and foremost is the fact that there is no need to design a system

for creating the Laser Guide Star (LGS). This alone can reduce the complex-

ity of the overall design considerably. In addition, NGS systems do not suffer

from focus anisoplanatism section 5.2.3; the reference wavefront samples the

entire depth of the atmosphere, and they are not blind to tip-tilt aberration

modes. NGS systems do, however, suffer from one very serious problem and

it is one for which there is effectively no solution, namely finding a reference

that is both bright enough and near enough to the object being observed. The

observer must accept the references which providence has seen fit to provide,

and hopefully one exists which will allow the adaptive optics system to be used

in the observation of the object of interest. Olivier and Gavel [23] show a plot of

the probability of finding a natural guide star (in the visible) of a given magni-

tude within a given angular separation of the observation star. For an angular

separation of 10 µrad there is only a 1% chance of there being a magnitude 16

or brighter reference near a given object. This is also only for an object near the
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relatively dense galactic plane, and the odds are much worse as the observation

object is closer to the galactic pole.

5.1.3 What about laser guide stars?

The most common artificial guide star is created by using a laser to excite

the gaseous sodium layer that exists in the upper atmosphere about 90 to 100

kilometers above the earth. With this method, it is possible to create a refer-

ence beacon with a consistent intensity anywhere in the field of view of the

telescope. It is thus possible to reduce the angular anisoplanatism of a system

simply by adjusting the configuration of the pumping laser for the artificial

guide star.

Laser beacons, however, suffer from other problems. The major problem

is a blindness to tip-tilt. As the pumping laser beam passes up through the

atmosphere it encounters a certain amount of turbulence. The distortions to

the shape of the beam profile are not of great concern since the purpose of the

laser is simply to deliver energy to the sodium layer in the upper atmosphere.

This energy is used to place the sodium atoms in an excited state so that when

they return to the ground state they will emit radiation which will serve as a

beacon. The beacon is effectively a point source (approximately 1 m in diameter

at an altitude of 90 km) and any variations in the beam profile will not be seen

from the ground. Beacon location, on the other hand, will be. The overall tip-

tilt aberration induced on the beam during its passage upward to the sodium

layer will change the location of the beacon on the stellar background. Since the

transition from ground state to excited state and back to ground state is rapid

(on the order of 16 ns Happer et al. [24]) the return beacon will see the same
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overall tip-tilt aberrations as on the trip up, this time in reverse. The tip-tilt

term of the return wave will thus cancel the turbulence induced displacement

of the pumping beam.

5.2 What is anisoplanatism?

Except for the rare cases where the object and the reference are one and

the same, light from the reference will not follow the same path to the wave-

front sensor as does light from the object. Since the wavefront sensor can only

measure the wavefront errors as seen by the reference, there will necessarily be

errors when the system tries to observe the object after correcting for the turbu-

lence traversed by light from the reference. These errors are called isoplanatic

errors or anisoplanatism. There are a variety of reasons for the appearance of

anisoplanatism, not all of which are present in every system configuration. The

sections below discuss the origins of the more common classifications of aniso-

planatism and the systems to which they apply, and in addition some solutions

are presented.

5.2.1 Angular anisoplanatism

When using a natural guide star, the light from the reference will arrive

at the entrance pupil of the telescope from a different angle than that from the

object. This is referred to as angular anisoplanatism (figure 5.1). Angular aniso-

planatism is the most common form of isoplanatic error and can be quantified

by the expression, due to Fried [25],

σ2
iso = 2.905 (2π)2

∫ L
0 C2

n (θξ)5/3 dξ

λ
2 (5.19)
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Figure 5.1: Angular anisoplanatism

where L is the total length of the propagation path and θ is the angular separa-

tion between the reference and the object. Fried also defined an isoplanatic angle

θ0 as

θ0
4
=

(

1
2.905

)3/5 ( 1
2π

)6/5
[

λ
2

∫ L
0 C2n (ξ) ξ5/3dξ

]3/5

(5.20)

which is simply the separation angle at which the mean-square error due to

anisoplanatism is 1 rad2. With this definition equation (5.19) can be written

σ2
iso =

(

θ

θ0

)3/5
. (5.21)
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It should be noted that the value for the squared isoplanatic error given in equa-

tion (5.19) assumes D/r0 � θ/θ0. While this may seem somewhat restrictive,

the general case is very complicated and unwieldy. In compensation for the

limited validity of equation (5.19) we can calculate, in most situations of inter-

est (large D/r0), the separation angle at which point isoplanatic error becomes

significant. For smaller values of D/r0 the true isoplanatic angle will be larger

than that predicted by equation (5.20).

With the help of equation (3.3), the calculation of the isoplanatic angle can

be simplified to

θ0 =
r0sph

L (6.88)3/5 =
r0

3.181 ·
[

∫ L
0 C2

n (ξ) dξ
∫ L

0 C2n (ξ) ξ5/3dξ

]3/5

. (5.22)

If we model the turbulence at a particular site as a thin layer at a certain altitude

then the second term in equation (5.22) simplifies to

[

∫ L
0 C2

n (ξ) dξ
∫ L

0 C2n (ξ) ξ5/3dξ

]3/5

=
(8/3)3/5

L (5.23)

and the expression for the isoplanatic angle becomes

θ0 =

(

8
3 · 6.88

)3/5 r0
L = 0.566 r0

L . (5.24)

Suppose that at a site there is a single turbulent layer at a height of 6.5 km, and

of the value of r0 is 15 cm in the visible, then in this case θ0 = 13.1 µrad or

about 2.7 arcseconds.
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5.2.2 Displacement anisoplanatism

Another source of isoplanatic error occurs when the system to be corrected

is not used to collect the light from the reference. In this case the wavefront

sensor optics are laterally displaced relative to the imaging system but with

an optic axis that is parallel to that of the main system. For this reason this

type of error is referred to as displacement anisoplanatism (Tyson [5]). This

configuration is fairly uncommon.

Figure 5.2: Displacement anisoplanatism
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5.2.3 Focus anisoplanatism

Artificial guide stars also suffer from angular isoplanatism, but suffer addi-

tionally from other types of anisoplanatism. All artificial guide stars are phys-

ically close to the observer compared to celestial objects. The light from ce-

lestial objects is nearly a perfect plane wave before it arrives at the aberrating

atmosphere. Artificial guide stars are usually not considered to be plane refer-

ence waves, but rather point sources originating somewhere in the atmosphere

(laser guide stars) or just above it (artificial satellites). Since the reference does

not have the same radius of curvature as the object, and therefore has a differ-

ent conjugate plane, this kind of anisoplanatism is called focus anisoplanatism

(figure 5.3).

5.2.4 Conjugation at the turbulent layer

One proposed solution for anisoplanatism is to place the wavefront cor-

rector at the conjugate plane of the turbulent layer rather than at the exit pupil.

The observation that this might help to enlarge the size of the isoplanatic patch

comes from the limits inherent in the application of a linear system approxima-

tion to an optical train. Even in a well corrected optical system the optical point

spread function will vary somewhat over the field of view. This effect (aniso-

planatism) is increased if a filter is placed in the system at a plane other than a

pupil or image plane. When the turbulence of the atmosphere is modeled as a

thin phase screen at a given altitude, this phase screen (a phase filter) is neither

at an image plane nor at a pupil plane. Correcting for the phase screen at the

exit pupil will therefore not account for the anisoplanatism due to the location
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Figure 5.3: Focus anisoplanatism

of the screen in the system. If, on the other hand, the aberrations are conjugated

in an image plane of the phase screen then the turbulence will not be seen by

the rest of the system and its location is irrelevant. This analysis assumes that

the atmospheric disturbances are indeed localized at one thin layer and since

this is not the case, the effectiveness of conjugating at the turbulent layer is not

perfect.
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5.2.5 Multiconjugate adaptive optics

An extension of the concept of conjugation at one single turbulent layer is

called multiconjugate adaptive optics. As the name implies, the system uses

several wavefront correctors to conjugate the aberrations. The idea is to as-

sign a layer of the atmosphere to a specific wavefront corrector and to place

this wavefront corrector at the conjugate point of the corresponding layer of

the atmosphere .If there are enough layers then each one can be modeled as a

thin phase screen. As long as the support of the wavefront correctors at each

turbulent layer includes the object, the effect of angular anisoplanatism can be

reduced. Normally, for a thick atmosphere, a tradeoff would need to be made

between the number of wavefront correctors and losses due to the extra optical

components along the optical path. If, however, the atmospheric effects at a

particular site can be well modeled by just a few distinct layers of turbulence,

then there is a potential for significant improvement in performance with only

a few wavefront correctors [12]. Naturally there will need to be a wavefront

sensing system for each layer to be corrected.
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PART II

FOCAL PLANE FILTERS AND ADAPTIVE OPTICS



Chapter 6

THEORY OF FOCAL PLANE FILTERS

Focal plane filters are a class of adaptive optics wavefront sensors that gen-

eralize several techniques that have seen wide use in the testing of optical el-

ements. The method is fundamentally simple: given an optical system that

forms an image of a transparent object, if a properly designed complex valued

filter is placed at the aperture stop it is possible to transform variations in phase

at the object into variations in irradiance at the image. The challenge is in de-

signing the plate to best make use of the characteristics of the system or object

at hand. When applying the method to adaptive optics systems, the turbulence

is identified with the transparent object. A plane which forms an image of the

reference object, whether a natural or artificial guide star, becomes a Fourier

plane for the atmospheric turbulence. This plane then becomes a natural can-

didate for the aperture stop of the wavefront sensor’s optical system. Once the

location of the plate is known the next step is the design of the form of the

plate. Three special cases of focal plane filters have seen wide use as wavefront

sensors in optical testing: the Smartt point diffraction interferometer, phase

contrast imagery, and dark ground imagery.

The plate used in a Smartt point diffraction interferometer has a low trans-

mission over most of its surface, but at its center there is a small region which

has a much higher transmission. The image of the reference object is placed

over this high transmission zone and this creates a spherical reference wave

which interferes with the rest of the wavefront in the image of the turbulence.
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Since this method blocks most of the light that passes through the plate, it is

only useful for high power applications.

In phase contrast imagery, a transparent plate is used and thus is very frugal

in terms of power from the reference. The plate is entirely transparent, but in

a small region its thickness is either slightly less or slightly more than the rest

of the plate. The plate is placed such that the image of the reference object

passes through this region. This method is used in biology in the construction

of microscopes that can observe transparent cells. It is also sometimes called

the Zernike method of observation.

The third method, dark ground imagery, is less widely used. It is essen-

tially the opposite of the point diffraction interferometer. The plate is entirely

transparent except for a small opaque region, and the image of the reference

is focused on this zone. We will see below that this method has potential as a

wavefront sensor in adaptive optics.

6.1 What are focal plane filters?

Most discussions of focal plane filters present them as two beam interfer-

ometers. The treatment in Born and Wolf [26, sec. 8.6c] of phase contrast mi-

croscopy follows Abbe’s view of image formation. They begin by looking at the

special case of a periodic phase grating and then the formulation is generalized

to include non-periodic objects. In this treatment, the filter core acts to either

block or retard the central diffraction order of the object. This central diffraction

order is light that has not been affected by passage through the phase object,

or in terms more familiar to adaptive optics, it is light that has not been aber-

rated by atmospheric turbulence. For the case of phase contrast microscopy,
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this light is allowed to pass through a retarding plate. The retarding plate is

chosen so that the central order is delayed by one quarter wavelength relative

to the higher orders. Now the unaberrated light is in phase quadrature with the

aberrated light and creates an interference pattern when an image of the phase

object is formed. This interference pattern in the image plane of the phase ob-

ject is directly related to the amount of aberration caused by the corresponding

point on the phase object. The articles by Golden [27] and Ojeda-Castañeda [28]

treat phase contrast observations as interferometers, but start from the point of

view of Fourier optics. This viewpoint has the advantage of making it clear

from the beginning that the results are not confined to the case of small aberra-

tions in the phase object.

The derivation below will in general follow Golden’s treatment, but without

placing too much emphasis on the point of view that the process is an interfer-

ometric one. When looking at phase contrast imagery, it is convenient to regard

the process as an interferometric one, however, when dealing with dark ground

imagery this can cause problems. Dark ground imagery does not have an iden-

tifiable reference wave, even though it can be viewed as a special case of the

Zernike method. The most general way of considering focal plane filters is as

complex valued filters in the frequency plane of the phase object.

In what follows we refer to Fig. 6.1 for our terminology. For the moment

we assume that the turbulence is represented as a phase screen at the pupil

of the telescope as this simplifies the presentation of the mathematics. The

adaptive optics reference is assumed to be at infinity, and thus the image plane

of the telescope is at the back focal plane. This is where the filter is placed. A
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Figure 6.1: General layout for focal plane filters

secondary lens is used to re-image the turbulent layer (in this case the pupil of

the telescope) onto a detector in the wavefront sensor plane.

The turbulent wavefront at the pupil of the telescope can be expressed as

T(x, y) = P(x, y) · exp[jφ(x, y)] (6.1)

where P(x, y) is the field in the pupil plane in the absence of turbulence and

φ(x, y) is the phase error in the pupil plane due to turbulence. Included in the

term P(x, y) is the pupil shape and the field irradiance. For example, if the

reference source is an on-axis point source located at infinity, then the input

field is a plane wave with constant incident irradiance. If we further suppose

that the telescope pupil is annular with an external diameter D and a central

obscuration with a diameter εD, then P(x, y) is given by

P(x, y) = P0
[

cyl
( r

D
)

− cyl
( r

εD
)]

. (6.2)
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In Eq. (6.2) we have followed the notation found in Gaskill [29] for representing

the telescope pupil. The constant factor P0 is the field amplitude incident on the

telescope pupil.

For the sake of simplicity, we will assume that the reference is a point source

aligned with the axis of the telescope. This is not a requirement for the sensor

to function, but it will avoid some additional complications in the mathematics.

In the focal plane of the telescope, and before passing through the filter,

the optical field is obtained from the two-dimensional Fourier transform of the

field at the pupil multiplied by a complex constant:

K1 FF {T(x, y)} = K1T̃
( x

λ f , y
λ f

)

. (6.3)

The constant K1 comes from the mathematics of diffraction and in this case

K1 = 1/jλ f · exp[j2π2r2/λ], where f is the focal length of the telescope.

At the image plane we place a filter. This filter has a support with a real

transmission coefficient αs and a central filter core with a real transmission co-

efficient αc and a real relative phase lag of δ (see Fig. 6.2). The filter core must

be located over the image of the reference source. In our case this is the center

of the field of view, but if the reference is located elsewhere in the field, the

filter core must be placed at the corresponding location in the image plane. If

the diameter of the filter core is given as dc and the support diameter as ds, the

filter is given by

H(x, y) = αs

[

cyl
( r

ds

)

− cyl
( r

dc

)]

+ αcejδcyl
( r

dc

)

. (6.4)
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Figure 6.2: The focal plane filter

This is a very general expression for the focal plane filter and includes several

special cases: phase contrast imagery (αs = αc, δ = ±π/2); the Smartt point

diffraction interferometer (αs � αc, δ = 0); and dark ground imagery (αc = 0).

The diameter of the filter core should be about the size of the Airy disk formed

by the telescope and the diameter of the filter support should cause the filter to

be the aperture stop for the wavefront sensor system. If the filter support is not

the aperture stop of the wavefront sensing system then there will be an extra

quadratic factor in the phase at the wavefront sensor plane, and this will cause

additional anisoplanatism in the wavefront sensing system (see for example

Gaskill [29, p. 451]). Passage through the filter simply multiplies the field before
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the filter by H, producing

K1H(x, y) · T̃
( x

λ f , y
λ f

)

(6.5)

as the representation of the field after the filter.

After traversing the filter the field passes through a lens which is placed so

as to form an image of the turbulence on a detector. The field at the detector

(the wavefront sensor plane) is then the Fourier transform of the field at the

image plane multiplied by a complex constant:

u(x, y) = K2 FF

{

H(x, y) · T̃
( x

λ f , y
λ f

)}

. (6.6)

After some manipulation, Eq. 6.6 yields

u(x, y) = K2 ·
1
m T

( x
m , y

m
)

∗∗ 1
p2 H̃

( x
p , y

p

)

(6.7)

where p = λz′/m′. The value of z′ is the distance from the image of the focal

plane filter as seen from the wavefront sensor to the wavefront sensor detector,

and m′ is the lateral magnification of this image. The factor m is the magnifica-

tion of the image of the pupil at the detector. In these equations K2 is a constant

that accounts for losses in the optical system. By expanding and rearranging

the terms above, we arrive at the expression

u(x, y) = αsasS(x, y)ejσ(x,y) +
[

αcacejδ − αsac
]

M(x, y)ejµ(x,y) (6.8)
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for the optical field, where

S(x, y)ejσ(x,y) =

[

T
( x

m , y
m
)

∗∗ somb
( r

p/ds

)]

, (6.9)

M(x, y)ejµ(x,y) =

[

T
( x

m , y
m
)

∗∗ somb
( r

p/dc

)]

, (6.10)

as = d2
s

K2π

4mp2 , (6.11)

and

ac = d2
c

K2π

4mp2 (6.12)

Equation (6.9) represents an optical field whose effects are governed by the

filter support. Its square modulus, S2(x, y), is in essence the image of the tele-

scope pupil that would be obtained if the filter were replaced by a clear aperture

of the same diameter as the filter support. Equation (6.10) is the field due to the

filter core, and acts as the reference wave for an interferometer.

With this expression for the field, it is a simple matter to calculate the irra-

diance incident upon the detector:

I(x, y) = |u(x, y)|2 (6.13)

I(x, y) = α2
s a2

s S2(x, y)+
[

α2
s a2

c + α2
c a2

c − 2αsαca2
c cos(δ)

]

M2(x, y)

+ [2αsαcacas cos(σ(x, y)− µ(x, y)− δ)

− 2α2
s a2

c cos(σ(x, y) − µ(x, y))
]

· S(x, y)M(x, y) .

(6.14)
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The full form of Eq. (6.14) is necessary to account for all the effects of diffrac-

tion, but by making a few observations, it is possible to perform a reasonable

simplification to this expression. In the paragraphs above it was noted that

the diameter of the filter core dc should be about the size of the diameter of

the Airy disk of the telescope. This would cause somb( r
p/dc

) in Eq. (6.10) to be

very wide and as a result µ(x, y) would be very nearly a constant value equal

to the average phase across the telescope pupil, i.e. zero. Additionally, the

support of the filter is the aperture stop for the wavefront sensor system. As

a result, somb( r
p/ds

) is very narrow and σ(x, y) is approximately equal to the

phase aberration in the telescope pupil plane. The light due to the reference

wave should have a uniform phase of very nearly zero since the light passing

through the filter core was not diffracted by the turbulence. Thus, if the diam-

eter of the filter support, ds, is large enough and the diameter of the filter core,

dc, is small enough, then

σ(x, y) − µ(x, y) ≈ φ(x/m, y/m) . (6.15)

This yields

I(x, y) = α2
s a2

s S2(x′, y′)+
[

α2
s a2

c + α2
c a2

c − 2αsαca2
c cos(δ)

]

M2(x′, y′)

+
[

2αsαcacas cos(φ(x′, y′) − δ)

−2α2
s a2

c cos(φ(x′, y′))
]

· S(x′, y′)M(x′, y′)

(6.16)

for the irradiance at the detector, where x′ = x/m and y′ = y/m. For heuristic

purposes, it is useful to neglect some of the effects of diffraction. When doing

so, it is assumed that the filter core diameter is made infinitesimally small and
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yet all of the light undiffracted by the turbulence passes through the filter core.

The resulting expression for the irradiance at the wavefront sensor detector is

I(x′, y′) =
[

2α2
s + α2

c − 2αsαc cos(δ) + 2αsαc cos(φ(x′, y′) − δ)

−2α2
s cos(φ(x′, y′))

]

· c2P2(x′, y′)
(6.17)

where P(x′, y′) is again the telescope pupil function from Eq. (6.1) and c is a

constant to ensure conservation of energy. Equation (6.17) is essentially that

given by Born and Wolf [26] as their Eq. (8.72).

We now simplify our results for two special cases of focal plane filters.

When creating a phase contrast wavefront sensor, the two amplitude transmis-

sion coefficients of the filter αs and αc are equal and δ is equal to π/2 or −π/2.

For the case where δ = π/2 Eq. (6.16) reduces to

I(x′, y′) =α2a2
s S2(x′, y′) + 2α2a2

c M2(x′, y′)

+
[

2α2acas sin(φ(x′, y′))

−2α2a2
c cos(φ(x′, y′))

]

· S(x′, y′)M(x′, y′)

(6.18)

and Eq. (6.17) to

I(x′, y′) =
[

3α2 + 2α2 sin(φ(x′, y′)) − 2α2 cos(φ(x′, y′))
]

c2P2(x′, y′) (6.19)
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where α = αs = αc. When δ = −π/2 we have

I(x′, y′) = α2a2
s S2(x′, y′) + 2α2a2

c M2(x′, y′)

+
[

−2α2acas sin(φ(x′, y′))

− 2α2a2
c cos(φ(x′, y′))

]

S(x′, y′)M(x′, y′)

(6.20)

and Eq. (6.17) becomes

I(x′, y′) =
[

3α2 − 2α2 sin(φ(x′, y′)) − 2α2 cos(φ(x′, y′))
]

c2P2(x′, y′) . (6.21)

The first case is called bright phase contrast and the second dark phase contrast.

For a dark ground wavefront sensor, the amplitude transmission for the

filter core, αc, is set to zero. This results in

I(x′, y′) = α2
s a2

s S2(x′, y′)+α2
s a2

c M2(x′, y′)

−2α2
s a2

c cos(φ(x′, y′))S(x′, y′)M(x′, y′)
(6.22)

for the more general case and

I(x′, y′) =
[

1 − cos(φ(x′, y′))
]

2α2
s c2P2(x′, y′) (6.23)

for the simplified case.
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6.2 Recovery of the phase

In all of the special cases above, the irradiance in the WFS plane is expressed

as a trigonometric function of the phase in the pupil plane multiplied by a

scaled pupil image. The form of the trigonometric function depends on the

values of the transmission and relative phase delay of the filter support and

core.

In order to extract a meaningful expression of the phase in the pupil plane,

we will be manipulating several expressions of the irradiance in the WFS plane.

We will now introduce a convenient shorthand for equation (6.17):

Iαs;αc;δ(x′, y′) =
[

2α2
s + α2

c − 2αsαc cos(δ) + 2αsαc cos(φ(x′, y′) − δ)

−2α2
s cos(φ(x′, y′))

]

· c2P2(x′, y′) .
(6.24)

The shorthands for equation (6.19), equation (6.21) and equation (6.23) are then

Iα;α; π
2
(x′, y′), Iα;α; 3π

2
(x′, y′) and Iα;0;−(x′, y′) respectively.

The case of a null filter causes the WFS camera to image the scintillation

directly. Using the new notation:

Iα;α;0(x′, y′) =
[

α2
]

c2P2(x′, y′) . (6.25)
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6.2.1 Zernike Visibility

To illustrate the use of this notation, we now present a derivation of the

Zernike visibility of a phase object.

V =
Iα;α; π

2
(x′, y′) − Iα;α; 3π

2
(x′, y′)

Iα;α; π
2
(x′, y′) + Iα;α; 3π

2
(x′, y′)

=

[

3α2 + 2α2S − 2α2C
]

c2P2 (x′, y′) −
[

3α2 − 2α2S − 2α2C
]

c2P2 (x′, y′)
[3α2 + 2α2S − 2α2C] c2P2 (x′, y′) + [3α2 − 2α2S − 2α2C] c2P2 (x′, y′) ,

where S = sin(φ(x′, y′)) and C = cos(φ(x′, y′)).

V =

[

4α2S
]

c2P2 (x′, y′)
[6α2 − 4α2C] c2P2 (x′, y′) =

2 sin(φ(x′, y′))
3 − 2 cos(φ(x′, y′)) (6.26)

This Zernike visibility is independent of intensity fluctuations in the pupil (scin-

tillation). Though it is not easily invertible, it is, however, a well behaved func-

tion as shown in figure 6.3 Taking advantage of the expression for Zernike vis-

ibility requires two images from the WFS camera. Using two WFS cameras in

parallel (spatial configuration) requires twice as much light as a single WFS

exposure. The alternative, changing the relative phase lag between the core

and filter with alternating WFS frames (temporal configuration), does not re-

quire more light to calculate a phase field, but it does introduce some temporal

anisoplanatism.

Although the expression for Zernike visibility is well behaved, there is an

ambiguity in the recovery of the phase. Looking a the region of plot shown in

figure 6.3 ranging from about one radian to about five and a quarter (i.e. minus

one) radians it is observed that this covers the majority of the domain of the
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Figure 6.3: Zernike visibility
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problem and is the most linear. If it is assumed that the phase to be recovered

by the visibility calculation lies within this region then direct application of

the visibility as feedback will drive the system to a piston value of π. Piston

error is not an issue, but there will be some error when the true phase values

from minus one to one. When the phase lies in this region then the feedback

applied will cause the phase at that location to be miscorrected. The phase

measured at the next frame will, however fall in the linear region of feedback.

The simulations in chapter 6 are an examination of this form of direct feedback

and the errors in the resulting correction.

6.2.2 Three Bin

When an application is not as light starved, a third WFS exposure (in either

a temporal or spatial configuration) can be used to calculate the tangent of the

phase:

Iα;α; π
2
(x′, y′) − Iα;α; 3π

2
(x′, y′)

6 · Iα;α;0(x′, y′) − Iα;α; π
2
(x′, y′) − Iα;α; 3π

2
(x′, y′) =

sin(φ(x′, y′))
cos(φ(x′, y′)) . (6.27)

This expression can be used to calculate the phase directly using the arctangent

routines available in any programming language.

6.3 Examples

This section will present examples of what the detector plane of a Focal

Plane Filter (FPF) WFS can look like. First, we look at the first six Zernike

modes. These modes will then form the phase field input to a FPF WFS. Ta-

70



i n m Polynomial Name

1 0 0 1 Piston
2 1 1 2r cos(θ) Tip-Tilt3 1 1 2r sin(θ)
4 2 0 2

√
3r2 −

√
3 Focus

5 2 2
√

3
√

2r2 sin(2θ) Astigmatism6 2 2
√

3
√

2r2 cos(2θ)

Table 6.1: The first six Zernike polynomials

Figure 6.4: The first six Zernike polynomials

ble 6.1 shows the expressions for these first six modes using the normalization

given by Noll [20] [see also 4, sec. 3.6.1] and figure 6.4.
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Now let’s modulate the phase of a plane wave impingent upon an imaging

system. The plane wave is modulated at the entrance pupil and an ideal FPF

WFS senses the wavefront at the pupil. In other words, we will directly evalu-

ate equation (6.24) using the Zernike polynomials as the true phase values.

First, use of the null filter Iα;α;0(x′, y′) (equation (6.25)) yields the normalized

irradiances shown in figure 6.5. Notice that there are no intensity variations.

Figure 6.5: Application of the null filter

This is an illustration that there is no scintillation when the aberrations are in a

wavefront sensor plane. Second, use of the phase contrast filter Iα;α;π/2(x′, y′)

(equation (6.21)) yields the normalized irradiances shown in figure 6.6. The
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Figure 6.6: Application of the phase contrast filter

energy is constant in all of the WFS images. Lastly, calculation of the Zernike

contrast (equation (6.26)) yields the phase maps shown in figure 6.7.

6.4 Wavefront calculation

Now that we have recovered the phase of the wavefront, it needs to be con-

verted into something that can be used by the wavefront corrector. The method

used is somewhat dependent on the type of wavefront corrector used. We will

discuss two methods. The first, phase unwrapping, is more useful for piston

type correctors and the second, pseudo Shack-Hartmann, is a natural interface

to existing systems that currently use a Shack-Hartmann WFS.
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Figure 6.7: Zernike visibility of Zernike polynomials

6.4.1 Phase unwrapping

The subject of phase unwrapping is a very complex topic. It is widely used

in radar remote sensing in order to accurately interpret the data from Synthetic

Aperture Radar (SAR) and calculate terrain maps. There is a wide body of

literature on the subject in the remote sensing journals and conferences. A very

good book length survey of various algorithms has been written by Ghiglia and

Pritt [30].

Fundamentally, phase unwrapping is the process of taking a field of phase

data modulo 2π and estimating the field of phase data without the 2π wrap-
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ping caused by the modulo operation. There are two basic stumbling blocks

in unwrapping the phase in a two-dimensional optical field. The first is that

there may be true discontinuities in the phase. These discontinuities introduce

more ambiguities in the unwrapping problem. In adaptive optics, this problem

is usually not encountered. It occurs more often in the reduction of SAR data.

The second obstacle is the appearance of phase residues.

When unwrapping a grid of phase values, if the order or direction in which

one passes through the grid affects the final result then the field cannot be un-

ambiguously unwrapped. The cause of this ambiguity is the existence of points

called phase residues. These phase residues are points in the phase field around

which a path integral is an integer multiple of 2π. These phase residues often

occur when the integrated irradiance of the optical field is zero. This happens

in the presence of strong scintillation.

Because of the residues in a phase field in the condition of strong scintil-

lation, the phase unwrapping algorithm must make some assumptions about

the original field. Those algorithms that work better when handling discon-

tinuities in the original phase field (e.g. a cliff or overhang in SAR data) do

not necessarily work well for adaptive optics. There are a class of algorithms

that use so called ’quality maps’ which take into account the fact that there are

some regions of a phase field in which one has more confidence in the accuracy

of the measurements. A WFS exposure in which the null filter (Iα;α;0(x′, y′) =
[

α2] c2P2(x′, y′))) is used, gives a good measure of this confidence.
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6.4.2 Pseudo Shack-Hartmann

In developing the simulations of deploying a FPF based WFS at North Os-

cura Peak (NOP) (chapter 8.1.3), it was necessary to process the output of the

FPF WFS into commands for the continuous facesheet Deformable Mirror (DM).

Since a model of the DM that took slopes as input and produced actuator com-

mands as output had already been developed and validated against many ex-

periments, it seemed prudent to produce tilts from the FPF WFS output. The

original plan was to unwrap the phase as discussed above and to numerically

calculate the tilts that corresponded to the inputs of the DM model.

After trying various unwrapping algorithms with limited success, it was

observed that the tilt computations were failing when the unwrapping algo-

rithm was not completely successful. Upon reflection it was noticed that the

FFT of a complex field is the same whether the phase was unwrapped or not.

Thus, if the output of a FPF WFS were passed to ’numeric’ Shack-Hartman,

the problem of unwrapping the phase field could be avoided. In a real sys-

tem this could be accomplished by passing the phase field to a Digital Signal

Processing (DSP) based dedicated computer. This computer would compute

the FFT of a complex field based on these input phase values. The result of

the FFT would then pass to the same centroiding algorithms that are in use in

existing Shack-Hartmann based AO systems.

At NOP there are two cameras that have been used as the WFS camera in

its Shack-Hartmann WFS. One camera has much better noise performance, but

was acquired after the rest of the system had been deployed. It was determined

that it would be simpler and not a performance hit to place a box that converted
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the output of the low noise camera into something that looked like it came from

the original camera. A similar procedure could be used for the output of a FPF

WFS. The output of this pseudo Shack-Hartman (or ’numeric’ Shack-Hartman)

WFS would have a very high signal to noise ratio from the point of view of the

centroiding algorithms.

In the simulations developed in chapter 8.1.3, the output of the FPF WFS

was used to modulate a plane wave source and this source was then used as in-

put to the standard Shack-Hartmann model for NOP, but with the noise turned

off. The resulting simulations were more stable than the simulations which re-

lied on phase unwrapping as part of the calculations of the DM commands.
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Chapter 7

COMPUTER SIMULATIONS: MATLAB

As a proof of concept, some simple MATLAB simulations were created. Many

simplifications were necessary in order to develop the algorithms that could

then be implemented as WAVETRAIN systems (see chapter 8) or in a table top

experiment (see chapter 9). Since the purpose of this dissertation was not to

develop a simulation framework or algorithms for the many other AO compo-

nents besides the WFS, the simulation of these other components suffered the

most at this stage of simulation. A flowchart illustrating the methodology used

in the simulation is shown in figure 7.1. The three main goals of these sim-

Figure 7.1: Matlab simulation flowchart

ulation were to develop the fundamental algorithms necessary for using FPF

WFSs in an adaptive optics system; to learn some of the basic charastics of this

class of WFSs; to find a acsnr threshold for a stable closed loop system.
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7.1 Turbulence

A single phase screen was used for the simulation of the turbulence. Since it

was modeled as at the pupil, there was no scintillation. This single phase screen

was generated with Kolmorogorov statistics and scaled so that its strength was

such that D/r0 was 12. To simulate wind, the screen was translated across the

pupil at a rate of two pupil diameters per second.

7.2 Corrector

The model for the corrector was that of a segmented piston corrector. It was

laid out on a rectangular geometry and the total stroke was 2π. This simple

model is adequate for simulating a LCD used as a wavefront corrector.

7.3 Tip-Tilt

No upstream tip-tilt correction was included in the model. All of the tilt

was corrected using the AO system

7.4 Detectors

The wavelength use for the simulations was 1.5 µm. Photon noise was sim-

ulated, but no detector noise.

7.5 Wave Front Sensor Filter

The desired location of the phase filter core was determined by first com-

puting a long exposure image of the reference and then selecting the location

of the peak value as the location of the filter core.
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A dynamic focal plane filter was used in the simulations. The relative phase

of the filter core was alternated between π/2 and −π/2 for each frame and

the Zernike visibility calculation (see equation (6.26) in section 6.2.1) was then

carried out for each frame:

V =

[

4α2S
]

c2P2 (x′, y′)
[6α2 − 4α2C] c2P2 (x′, y′) =

2 sin(φ(x′, y′))
3 − 2 cos(φ(x′, y′)) (7.1)

This allows for a calculation of the phase error that is independent of possi-

ble spatial fluctuations in the irradiance at the detector plane. The result of

this visibility calculation was then used as a direct feedback to the wavefront

corrector.

7.6 Simulations

The simulations were carried out at four photon flux rates: 145, 7, 4.5 and

3 photons per wavefront sensor pixel per frame. All of the simulations used

the same phase screen and the phase screen was started at the same location.

The screen was translated across the pupil at the same rate and in the same

direction

The respective plots of the Strehl ratio as a function of time are given in

Figures (7.2-7.5). The dip in level of correction near the one second mark is

likely due to the existence of a particularly strong tip-tilt component during

that segment of the phase screen.
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Figure 7.2: 145 photons per pixel per frame
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Figure 7.3: 7 photons per pixel per frame
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Figure 7.4: 4.5 photons per pixel per frame
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Figure 7.5: 3 photons per pixel per frame
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7.7 Conclusions

The simulations demonstrate that, with no scintillation, using the direct ap-

plication of Zernike visibility as the feedback for a cloosed loop AO system

wirks well. In addition a SNR threshold was found of around three to five pho-

todetector events per pixel per frame (averaged over the pupil). The inability of

the simulation to maintain closed loop correction when the large tip-tilt compo-

nent appears indicates that the system would preform better is a fast tracking

loop was included.
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Chapter 8

COMPUTER SIMULATIONS: WAVETRAIN

In order to simulate the performance of focal plane filters in adaptive optics

systems, the WAVETRAIN [31] simulation framework was chosen. WAVETRAIN

has been used to simulate parts of the Air Force’s Airborne Laser (ABL) system

and the NOP facility. The ABL is an anti-ballistic missile system that uses a

laser to destroy missiles in the boost phase. It uses a sophisticated adaptive

optics system to correct for atmospheric disturbances before the laser is sent

out of the airplane.

The NOP test facility is a facility for testing components and algorithms in

various directed energy systems before final development. It has been used to

test many aspects of the Airborne Laser program. At the site there is a fully

functional adaptive optics system. The wavefront corrector for the system is a

241 actuator continuous facesheet DM mirror. The model of this DM was used

in the simulations described below.

In the simulations, no fine track system was used to remove the tip-tilt terms

in the turbulence spectrum. The removal of tip-tilt was all done by the wave-

front corrector. This was done to isolate the preformance of the several WFSs.

A thick atmosphere was modeled. Four phase screens evenly spaced along the

propagation path were able to produce realistic scintillation.

There were four goals to these simulations. First, to compare the SNR thresh-

old estimated in the preliminary simulations (chapter 7). Second, to investigate

the performance and reconstruction methods of FPF WFSs in the presence of

scintillation. Third, to investigate the performance of FPF WFSs in conjunction
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with continuous facesheet DMs. Lastly, to compare the performance of FPF

WFSs with Shack-Hartmann WFSs in low light conditions.

8.1 The Simulation Layouts

Several configurations were created in order to investigate various aspects

of the wavefront sensor. The configurations were grouped into two configura-

tions. The first configuration consists of closed loop AO systems that use what

will be termed an ideal corrector. This corrector is an attempt to perfectly cor-

rect a wavefront at a given location. It is implemented by applying an array of

phase correction values directly to the incident array of complex numbers that

represent the wavefront. This correction array is on the same sampling mesh

as the wavefront array. As such it is the best correction that can be applied

numerically in a single plane.

The second configuration groups several closed loop AO systems that use a

model of the DM that is installed at NOP. This DM is a 241 actuator continuous

facesheet deformable mirror. The outer ring of actuators is not used. The model

of this DM was developed as part of the simulation of the ABL testing done at

NOP and has been well validated. This DM model was used in anticipation of

implementing a prototype at NOP.

8.1.1 Common Elements

The elements of the simulations that are common to both groups are shown

in figure 8.1. These elements constitute an open loop imaging system. All of the

data runs in this dissertation were configured so as to simulate an engagement

between Salinas Peak and NOP. This is a common scenario at the NOP facility.
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Figure 8.1: Common elements in the simulations

A point source beacon is turned on at Salinas Peak, a distance of 52 km and is

imaged at NOP. The exposure interval of all of the WFS cameras is 0.5 ms. So

as to minimize the effect of systems not under study, it was decided to correct

for tip-tilt errors using the AO systems.

pointsource

This subsystem models a point source radiating into a hemisphere. The total

power impingent upon the entrance pupil is this geometry is approximately

4 µW.

PropControl

PropControl is a system whose purpose it is to modify the propagation pa-

rameters in order to efficiently run the simulations.
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atmosphere

This atmosphere model is configured for four phase screens, evenly spaced

along the propagation path. Four phase screens was sufficient to produce sig-

nificant scintillation along the propagation path while not overtaxing compu-

tational resources.

phase filter

This system is used during debugging and diagnosis to apply a known

phase at the entrance pupil of the telescope.

telescope

The telescope system models an ideal lens with an aperture. The size of the

entrance pupil is 0.75 m.

ol ppd

Figure 8.2: DiagnosticPlane composite system
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In the closed loop systems there are several diagnostic subsystems. These

are all instances of the DiagnosticPlane system class. The ol ppd system in

figure 8.1 is also an instance of this class. DiagnosticPlane is a composite system

and its internal structure is shown in figure 8.2.

Since this subsystem is placed at a pupil plane of the system to be modeled,

the near field calculations are appropriate for analyzing a pupil plane.

For the near field, the phase and square modulus can be recorded. In addi-

tion, the phase error can be calculated and recorded. This is important because

saving raw images of a Monte Carlo analysis can take enormous amounts of

disk space. Instead, just the standard deviation of the phase can be recorded,

saving a great amount of space. The phase is unwrapped before the standard

deviation is calculated.

8.1.2 Ideal Corrector

Figure 8.3: Closed loop simulation with ideal corrector
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In order to investigate the performance of the FPF WFSs without regard

to the effects introduced by the wavefront corrector, a set of closed loop AO

systems that made use of a so-called ideal corrector were created. This corrector

was implemented as a system that applies grid-level direct phase conjugation

of an incoming wave.

wrapped ic ao loop

This loop used a system that extracted the phase from the incoming wave

by means of a simple rectangular to polar calculation on the complex valued

grid that represented the wave. The result was then fed back into the ideal

corrector in order to close the loop.

unwrapped ic ao loop

The unwrapped ic ao loop subsystem is very similar to the wrapped ic ao loop,

the only difference being that the phase field is passed to a phase unwrapping

system before closing the loop through the ideal corrector.

itb ic ao loop

As a next step toward a more realistic closed loop, the Optical Path Difference

(OPD) of the wavefront was calculated by direct application of equation (6.27).

Recall that this equation does not include all of the effects of diffraction. It is

therefore referred to as an ideal three bin WFS.
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tb ic ao loop

For yet another level of realism, diffraction was added to the tb ic ao loop

system. It also uses the three bin expression for phase recovery, but rather than

use analytic expressions for the field at the detector plane, the input wave to the

WFS is first propagated to an image plane, then multiplied by the appropriate

complex filter, then propagated to a pupil plane, where it encounters a detector.

The WFS in the simulations uses the spatial configuration, i.e. there are three

WFS detectors in parallel.

8.1.3 NOP Corrector

Figure 8.4: Closed loop simulation with NOP corrector

After having investigated the WFSs without regard to corrector effects, a set

of closed loop systems using the NOP deformable mirror were created. The

first one is a Shack-Hartmann WFS. The parameters for this WFS match those

of the real system installed at NOP and thus the comparisons of the other WFSs

to this one are in essence comparisons to current NOP performance.
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The separation between DM actuators at the telescope primary is 4.5 cm.

Thus, if the value of r0 is less than this, the turbulence is under sampled.

8.2 Results: Ideal Corrector

Appendix A shows the results of some Monte Carlo case studies of the FPF

WFS systems using the ideal corrector model. There were ten random seeds

used to generate the phase screens, and the errorbars in the plots derive from

these ten independent runs. Table 8.1 sumarizes these plots.

The turbulence strength in terms of r0 ranges from 30 cm to 12 cm and the

wind speed blowing across the propagation path is either 5 m/s or 10 m/s. The

table shows the comparative levels of correction produced when using each of

the four WFSs. The results are given in terms of a steady state residual phase

error.

The ideal three bin WFS compares favorably with the two ideal wavefront

sensors and actually tracks the unwrapped phase measurements very closely.

The three bin WFS with diffraction has a steady state limit of about 1 1
2 rad RMS

residual phase error. In these simulations, the filter core size is on the order of

twice the diffraction limit.

These results show that simulations using the ideal three bin FPF WFS are

representative of best case sensing of turbulence using a single wavefront sen-

sor.
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r0 Wind Speed
(m/s)

rms phase error (rad)
Wrapped Unwrapped Ideal FPF FPF

30 5 < 0.1 < 0.1 < 0.1 1.5
10 < 0.1 < 0.1 < 0.1 1.5

20 5 < 0.1 < 0.1 < 0.1 1.5
10 < 0.1 < 0.1 < 0.1 1.5

15 5 < 0.1 < 0.1 < 0.1 1.5
10 < 0.2 < 0.2 < 0.2 1.5

12 5 < 0.2 < 0.2 < 0.2 1.5
10 < 0.25 < 0.25 < 0.25 1.5

Table 8.1: Summary of ideal corrector simulations

8.3 Results: NOP Corrector

Now we presents the results of a set of Monte Carlo runs under varying

atmospheric conditions using a model of the NOP DM. The turbulence strength

in terms of r0 ranges from a weak 30 cm to an extreme 3 cm. The system at NOP

was designed to operate at typical r0 values of from 15 cm to 5 cm. The wind

speed across the telescope aperture was varied from 0 m/s to a strong 20 m/s.

There were 10 Monte Carlo seed values per set of atmospheric conditions. It

was from these 10 runs that the error bars were calculated. The reconstructor

for the DM is conditioned to eliminate waffle, so this is not a factor in these

simulations. The full results are plotted in appendix B. Table 8.2 sumarizes

these plots.
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r0 Wind Speed
(m/s)

rms phase error (rad)
Shack-Hartmann Ideal FPF FPF

30 0 1.1 0.3 0.5
5 1.1 0.3 0.5
10 1.1 0.4 0.75
20 1.1 0.4 0.6

20 0 1.1 0.4 0.6
5 1.1 0.4 0.6
10 1.1 0.4 1
20 1.1 0.4 1

15 0 1.25 0.4 unstable
5 1.25 0.4 unstable
10 1.25 0.4 unstable
20 1.25 0.4 unstable

12 0 1.5 0.75 unstable
5 1.5 0.5 unstable
10 1.5 0.5 unstable
20 1.5 0.6 unstable

9 0 2 1 unstable
5 2 1 unstable
10 2 1 unstable
20 2.5 1.25 unstable

6 0 3.25 2 unstable
5 3.25 2 unstable
10 3.25 2.25 unstable
20 3.25 2.5 unstable

3 0 3.5 3 unstable
5 3.5 3 unstable
10 3.5 3 unstable
20 3.5 3 unstable

Table 8.2: Summary of NOP simulations
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8.4 Results: NOP Corrector and a brighter source

Because some of the results in the previous section were a bit surprising, it

was decided to create some trial runs with a brighter beacon. It was hoped that

this might confirm the hypothesis that the beacon was set too low to illustrate

the differences between the WFSs at the stronger turbulence levels. This section

shows the results of doubling the beacon power relative to the previous two

sections. The Shack-Hartmann WFS is now performing more as expected and

the three bin WFS with diffraction is also a bit more stable. Table 8.3 sumarizes

these plots.

8.5 Results: NOP Corrector and a still brighter source

To further investigate the issue of beacon power as it relates to Shack-Hartmann

performance and FPF WFS stability, the power was increased yet again. This

section shows the resulting plots. One thing to note is that the three bin model

with diffraction is starting to track closer to the ideal three bin model at the

higher wind speeds. Table 8.4 sumarizes these plots.

r0 Wind Speed
(m/s)

rms phase error (rad)
Shack-Hartmann Ideal FPF FPF

12 0 1 0.5 0.75
5 1 0.25 3
10 1 0.4 0.5
20 1 0.4 unstable

Table 8.3: Summary of NOP simulations with double power beacon
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r0 Wind Speed
(m/s)

rms phase error (rad)
Shack-Hartmann Ideal FPF FPF

12 0 0.9 0.4 1.0
5 0.75 0.25 2
10 1 0.4 0.6
20 0.75 0.4 0.75

Table 8.4: Summary of NOP simulations with triple power beacon

8.6 Single frames

Figures 8.5-8.7 show individual frames from a single FPF WFS camera. The

first frame (figure 8.5) is representative of frames from the Monte Carlo runs

performed in sections 8.2 and 8.3, the second (figure 8.6) is a frame from the

run in section 8.4 and the third (figure 8.7) from section 8.5.

The runs in sections 8.2 and 8.3 had a low power AO beacon and the net

power on the detector of about 4 µW. This low of a power was chosen in order

to illustrate the performance of the FPF WFS at a critical point in the parame-

ter study. During the preliminary runs for the systems, the various WFSs ap-

peared to preform better than the Monte Carlo runs finally indicated. This was

mostly because, due to limited computer resources, the preliminary runs were

for shorter periods of time. As can be seen from the plots, the three bin FPF

WFS only became unstable later in the runs.

The run plotted in section 8.4 had a beacon with double the power, or 8 µW,

and the run in section 8.5 had a beacon producing about 13.5 µW.

95



Figure 8.5: Three Bin with diffraction WFS single frame, r0 = 12 cm, wind speed
= 5 m/s, low power beacon

Figure 8.6: Three Bin with diffraction WFS single frame, r0 = 12 cm, wind speed
= 5 m/s, double power beacon
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Figure 8.7: Three Bin with diffraction WFS single frame, r0 = 12 cm, wind speed
= 5 m/s, triple power beacon
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8.7 Summary

One thing to consider with these results is that they show a worst case per-

formance relative to the existing NOP system. These simulations were more

light starved than the normal operating conditions for NOP. This is the main

cause for the poor performance of the Shack-Hartmann loop. The FPF WFS

based loops do better for mild turbulence, but they too perform poorly as the

atmosphere degrades.

It appears that the error rejection for the FPF WFS configuration chosen was

poor. There are two things that could improve this. First, the diameter of the

FPF filter core could be adjusted from twice the Airy disk diameter to closer

to the size of the Airy disk diameter. This is known to improve performance

of phase contrast imaging systems in other applications. The limit of the ideal

FPF loop indicates that this might also improve performance in this adaptive

optics application. In addition, the FPF loops might benefit more from a modal

filter, as they are clearly sensing modes that are in fact noise. Comparison of

the results presented here with simulations that include a tip-tilt loop would

also prove useful.

Something else that would be profitable to investigate is changing the de-

tector size. The FPF WFS camera was 128 pixels by 128 pixels, the same as

the Shack-Hartmann WFS camera. Since the reconstructed phase from the FPF

WFS was passed to a pseudo-Shack-Hartmann reconstructor, this seemed rea-

sonable. However, since the pseudo-Shack-Hartmann reconstructor is not a

real wavefront sensor, this may not be the optimum configuration. If, for ex-

ample, the ’detector’ plane of the pseudo-Shack-Hartmann is much higher res-

olution there is no penalty for noise and it would be possible to have larger
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guard bands in the Shack-Hartmann sub-apertures. All of this while reducing

the array size of the FPF WFS camera and thereby increasing the photon flux

rate per pixel.
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Chapter 9

EXPERIMENT

In order to investigate some of the properties of FPF AO systems in a more

realistic context, a closed loop system was assembled from parts that were on

hand at the Electro-Optics Research Lab (EORL). This closed loop system made

use of LCDs both to generate and to correct for simulated turbulence. In ad-

dition an LCD was used to create the focal plane filter. The main goal of the

experiment was to replicate the results of the simulations presented in chap-

ter 7. This motivated the use of the phase screen from the simulations in the

experiment.

9.1 Layout

The optical layout of the experiment can be seen in figure 9.1. The point

source was created by spatially filtering a HeNe laser. This light is then col-

limated by a well corrected lens manufactured by Space Optics Research Lab

(SORL). This lens is designed for optical correlation experiments and is well

suited to collimating light from point sources.

The collimated light then impinges on an LCD. This LCD will act as a tur-

bulence generator. Since there is only one screen of simulated turbulence, this

layout is not able to simulate the effects of scintillation. This LCD has a twisted

nematic geometry. Since the LCD to be used for correction is also a twisted

nematic device, it was necessary to place a half wave plate between the two

devices.
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Figure 9.1: Experimental layout
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The LCDs were placed in mounts that could be adjusted with high preci-

sion along all three axes. In addition, some control of the rotation about the

z-axis was necessary. This was because the experiment was designed so that a

pixel on the corrector LCD corresponded exactly to a pixel on the turbulence

LCD. It is because of this also that the half wave plate was necessary. The pixels

on the LCDs are not square and so it would not have been possible to rotate one

of the LCDs by 90 degrees about the z-axis in order to line up the polarization

of the light to the director of the LCD.

Since the pixels on an LCD form a regular grid, there will be multiple dif-

fraction orders in the far field. In order to avoid sampling issues, an iris that

filters out all but the central diffraction order is placed at the focus formed by a

lens placed directly after the LCD. Since an image of the turbulence LCD is to

be formed on the corrector LCD after the central order is filtered, a 4 f system

is placed between the two LCDs and the iris is placed in the filter plane.

For filtering the central order after the corrector LCD another SORL lens

was chosen. It was placed after a turning flat that was located at the end of

the optical table. The central diffraction order is a potentially corrected image

of the point source, but it is not the proper size for evaluation nor the proper

location on the table for use in a FPF WFS. As such, it is necessary to relay this

image. The first relay lens brings the image further down the table , but at the

same magnification. At this point a beam splitter is placed in the path. The

reflection is used for the WFS and the transmitted beam is sent to the science

camera.

The science camera image needs to be magnified a bit so the lens placed

behind the splitter was adjusted to produce a magnification of about 3.
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The WFS path is formed from the light reflected off of the beam splitter in

front of the science camera. Since the image formed at the beam splitter was

the correct size for the WFS we just need to relay it with unit magnification to

a plane at which we can place the FPF. The filter LCD is of the same type as

that used to generate the turbulence and the correction upstream. The size of

the image at the LCD is such that it fills a two pixel by two pixel area of the

LCD. A lens (called the WFS lens) was then placed after the LCD in order to

form an image of the turbulence and corrector LCDs on the WFS camera. This

image has been passed through a complex valued filter and is an interferomet-

ric measure of the closed loop phase after the application of the corrector LCD.

The exact form of this interferometer pattern depends on the particular filter

generated by the filter LCD.

In order to make sure that the spot formed by the relay lens is located at the

proper place in the filter plane, an alignment leg was formed. A pellicle beam

splitter was placed after the WFS lens in order to align the FPF LCD without

modifying the WFS path. An initial lens forms an image of the WFS LCD before

a microscope objective is used to image the LCD with high enough precision

on the alignment camera.

9.2 Technique

9.2.1 Computers

The minimal setup for the experiment would require controlling three LCD

drivers and digitizing two cameras. The boards used to control the LCD drivers

were custom made at the EORL. The boards used to digitize the camera images

were made by Imagenation. Due to a combination of hardware and software
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Figure 9.2: Phase screen

limitations, it was not possible to control the experiment with just one com-

puter. Since the WFS camera and the LCD controllers for the filter LCD and the

corrector LCD needed to be the same computer, it was decided that the second

computer would control the turbulence LCD. Since the first computer could

also handle the science camera it was set up to do so. The turbulence computer

was capable of controlling another LCD and so for the runs in which ideal

correction was tested, it controlled both the turbulence LCD and the corrector

LCD.

9.2.2 Turbulence

In order to implement the turbulence, a phase screen was created using Kol-

mogorov statistics (figure 9.2). The screen values were then scaled for each run.

So that wind could be simulated, an over sized screen was generated in order

to be translated across the LCD.
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9.2.3 Focal Plane Filter

Since twisted nematic LCDs can be used in phase modulation mode and

amplitude modulation mode, but not both at the same time, it was decided that

the experiment would be set up so that the FPF LCD operated in phase mode.

This allowed testing of the Zernike contrast method of phase calculation. The

phase retardation of the filter was alternated between plus and minus π/2 and

the contrast calculated after each frame. Since the system was aligned so that

a pixel on the WFS camera corresponded to a pixel on the corrector, there was

no real need for a reconstructor. The accumulated correction was then applied

directly to the LCD.

9.3 Results

During the taking of experimental data, a TV monitor was used to view the

output of the camera in real time. It was clear during the experiment that when

the loop was closed that the system was correcting a significant amount of the

phase from the turbulence LCD. When the data was analyzed, it became ob-

vious that the recorded level of correction did not correspond to the observed

level of correction. For example, figure 9.3 shows a typical open loop frame

and figure 9.4 shows a typical closed loop frame. There is obviously some cor-

rection, yet a comparison of the peak values in the two runs shows almost no

correction. The peak values of the runs are shown in figure 9.5. The open loop

and closed loop runs are nearly identical despite the obvious differences in the

images. The labels for the figure come from the summary of the data log in ta-

ble 9.1. These digitized still frames show even less evidence of correction than
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Figure 9.3: Open Loop

Figure 9.4: Closed Loop
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Figure 9.5: Experiment results: peak value metric
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the real time TV output of the cameras.

In trying to determine a valid metric for correction, a major problem was

that digitized values below 16 Analog to Digital Units (ADUs) are recorded as

16 with the hardware for the experiment. This made it impossible to normalize

the images based on conservation of energy. Each image appeared to vary in

responsivity when the loop was closed so what was needed was a self normal-

izing metric that measured the spread of energy in a frame. It was decided to

use a moment of inertia calculation:

xmoi = ∑
∀x,∀y

I(x, y) · (x − xcent)
2

ymoi = ∑
∀x,∀y

I(x, y) · (y − ycent)
2

(9.1)

where

xcent = ∑
∀x,∀y

I(x, y) · x

ycent = ∑
∀x,∀y

I(x, y) · y
(9.2)

(i.e. the centroid). This metric gave a quantitative measure that corresponded

reasonably with the qualitative observations.

A plot showing the summary results is shown in figure 9.6. The scalar met-

ric for the plot is

metric = rmoi =
√

x2
moi + y2

moi (9.3)

There are a couple of anomalies to note first. When all of the LCDs are turned

off, there is a much higher throughput. As a result, the image is strongly sat-
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Figure 9.6: Experiment results: moment of inertia metric
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Figure 9.7: Single frame with all LCDs off

urated (see figure 9.7). This caused the moment of inertia to be larger than it

should have been. At the other extreme, the first run of closed loop simulations

had too short an exposure length (figure 9.8). As a result, the moment of iner-

tia calculation was too small: All of the light that had not been corrected was

under the 16 ADU threshold. The open loop runs in figure 9.6 show a larger

moment of inertia than the closed loop runs. This corresponds to the broader

versus narrower spot in the images.

Table 9.1 shows the pertinent details of the experiment log. The first column

describes the state of the loop. There were several “ideal” runs. These were

runs where the turbulence and corrector were run by the turbulence computer

and the phase applied to the corrector LCD was of equal and opposite sign

to that applied to the turbulence LCD. This was to verify alignment and an
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Loop
State

Exposure Turbulence
Length (ms) Scale Factor

All Off 1 N/A
Ideal Correction (static) 1 20
Ideal Correction (static) 1 10
Ideal Correction (static) 1 5
Ideal Correction (static) 1 1

Ideal Correction (dynamic) 1 20
Ideal Correction (dynamic) 1 10
Ideal Correction (dynamic) 1 5

Closed Loop (under powered) 1 20
Closed Loop 2 20
Closed Loop 2 10
Closed Loop 2 5
Closed Loop 2 1
Open Loop 2 20
Open Loop 2 10
Open Loop 2 5
Open Loop 2 1

Table 9.1: Test log summary
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Figure 9.8: Single frame: Exposure length too small

attempt to provide a reference for correction. A data run was also taken with

all of the LCDs off. The second column gives the exposure length of the science

camera in ms. The final column gives the scale factor applied to the phase

screen before being written to the turbulence LCD.

9.4 Conclusion

Fundamentally the problem with the experiment was one of finding a proper

reference with which to judge success. The throughput of the system varied de-

pending on whether the LCDs were on or not and whether the turbulence LCD

and corrector LCD were controlled by the same computer. This lack of quantifi-

ability made standard AO metrics like Strehl ratio or Power-In-the-Bucket (PIB)

useless.
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Using the moment of inertia of the image as the performance metric gave

quantitative results that corresponded reasonably with qualitative observations

of the recorded science camera images. This metric should map well to 3 dB PIB

for well corrected images or gaussian beams, but it seems to be more appropri-

ate for poorly corrected or open loop cases.

The experiment did demonstrate that Zernike visibility method of direct

feedback can be used to close the loop in a hardware adaptive optics. It was

not possible to replicate the results of the simulations in chapter 7. There were

several obstacles to achieving this goal. The 16 ADU threshold meant that it

would not be possible to replicate the search for a SNR threshold: the threshold

would be below the 16 ADU cutoff. The synchronization problems meant that

quantitative comparisons with the simulations’ use of single frame Strehl was

not possible. Without better hardware, quantitative comparisons between the

simulations and experiment would be very difficult.
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Chapter 10

CONCLUSION

The proposal that a wavefront sensor based on focal plane filters could be

used effectively in an adaptive optics system was first proposed in Seward et al.

[1]. This dissertation has expanded on that original work and has demonstrated

that they are viable candidates.

The discussion of the theory of FPF WFSs in chapter 6 gives a unified view

of a large class of interferometric techniques. This presentation is unique in that

it allows for a generalization to filters that are either dynamic or continuously

varying in form.

In addition, the proposal to use a numeric implementation of a Shack-Hartmann

WFS both eases the integration path for FPF WFS systems and improves the

performance when using a continuous facesheet DM for correction. The pseudo-

Shack-Hartmann reconstructor eases the integration by exploiting any existing

infrastructure or knowledge based on the Shack-Hartmann WFS in AO sys-

tems.
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Appendix A

IDEAL CORRECTOR PLOTS

This appendix collects the detailed plots resulting from the simulations run

with the ideal corrector. The text in section 8.1.2 describes the simulations and

section 8.2 sumarizes these results.
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Figure A.1: Wrapped phase WFS, r0 = 30 cm, wind speed = 5 m/s
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Figure A.2: Unwrapped phase WFS, r0 = 30 cm, wind speed = 5 m/s
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Figure A.3: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 5 m/s
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Figure A.4: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 5 m/s

A.1.2 wind speed = 10 m/s
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Figure A.5: Wrapped phase WFS, r0 = 30 cm, wind speed = 10 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

Unwrapped Phase: IC
r
0
 = 30 cm, wind speed = 10 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure A.6: Unwrapped phase WFS, r0 = 30 cm, wind speed = 10 m/s
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Figure A.7: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 10 m/s
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Figure A.8: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 10 m/s

120



A.2 r0 = 20 cm

A.2.1 wind speed = 5 m/s
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Figure A.9: Wrapped phase WFS, r0 = 20 cm, wind speed = 5 m/s
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Figure A.10: Unwrapped phase WFS, r0 = 20 cm, wind speed = 5 m/s
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Figure A.11: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 5 m/s
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Figure A.12: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 5 m/s

A.2.2 wind speed = 10 m/s
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Figure A.13: Wrapped phase WFS, r0 = 20 cm, wind speed = 10 m/s
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Figure A.14: Unwrapped phase WFS, r0 = 20 cm, wind speed = 10 m/s
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Figure A.15: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 10 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

Three Bin with diffraction: IC
r
0
 = 20 cm, wind speed = 10 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure A.16: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 10 m/s
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A.3 r0 = 15 cm

A.3.1 wind speed = 5 m/s
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Figure A.17: Wrapped phase WFS, r0 = 15 cm, wind speed = 5 m/s
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Figure A.18: Unwrapped phase WFS, r0 = 15 cm, wind speed = 5 m/s
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Figure A.19: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 5 m/s
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Figure A.20: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 5 m/s

A.3.2 wind speed = 10 m/s
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Figure A.21: Wrapped phase WFS, r0 = 15 cm, wind speed = 10 m/s
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Figure A.22: Unwrapped phase WFS, r0 = 15 cm, wind speed = 10 m/s
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Figure A.23: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 10 m/s
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Figure A.24: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 10 m/s
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A.4 r0 = 12 cm

A.4.1 wind speed = 5 m/s
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Figure A.25: Wrapped phase WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure A.26: Unwrapped phase WFS, r0 = 12 cm, wind speed = 5 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

Ideal Three Bin: IC
r
0
 = 12 cm, wind speed = 5 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure A.27: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure A.28: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s

A.4.2 wind speed = 10 m/s
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Figure A.29: Wrapped phase WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure A.30: Unwrapped phase WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure A.31: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure A.32: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s
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Appendix B

NOP CORRECTOR PLOTS I

This appendix collects the detailed plots resulting from the simulations run

with the model of the continuous facesheet DM at NOP and with an aperture

averaged power over the pupil of 4 µW. The text in section 8.1.3 describes the

simulations and section 8.3 sumarizes these results.

B.1 r0 = 30 cm

B.1.1 wind speed = 0 m/s

With such low turbulence and wind, all three of the loops preform well.

The Shack-Hartman loop is operating at its limits of performance. For the same

light levels, the FPF WFSs do a better job.
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Figure B.1: Shack-Hartmann WFS, r0 = 30 cm, wind speed = 0 m/s
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Figure B.2: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 0 m/s
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Figure B.3: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 0 m/s
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B.1.2 wind speed = 5 m/s

As a moderate wind blowing across the propagation path is added, the im-

provements observed in the FPF WFS systems is still evident.
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Figure B.4: Shack-Hartmann WFS, r0 = 30 cm, wind speed = 5 m/s
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Figure B.5: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 5 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

Three Bin with diffraction: NOP
r
0
 = 30 cm, wind speed = 5 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure B.6: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 5 m/s

139



B.1.3 wind speed = 10 m/s

With the 10 m/s wind, the FPF WFS that includes diffractive effects shows

a marked degradation in performance. The cause of this is unclear since the

next set of runs with a stiffer (20 m/s) wind do not exhibit the same behavior.
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Figure B.7: Shack-Hartmann WFS, r0 = 30 cm, wind speed = 10 m/s
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Figure B.8: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 10 m/s
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Figure B.9: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 10 m/s
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B.1.4 wind speed = 20 m/s

With a stiff wind the model of the FPF WFS again shows performance on

par with the ideal system. Both outperform the Shack-Hartmann.
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Figure B.10: Shack-Hartmann WFS, r0 = 30 cm, wind speed = 20 m/s
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Figure B.11: Ideal Three Bin WFS, r0 = 30 cm, wind speed = 20 m/s
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Figure B.12: Three Bin with diffraction WFS, r0 = 30 cm, wind speed = 20 m/s
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B.2 r0 = 20 cm

For these next several series the turbulence strength is increased to a still

moderate r0 = 20 cm. The low wind speed cases still show marked improve-

ment with the FPF WFS systems.

B.2.1 wind speed = 0 m/s

There is not much change between this case and the case of r0 = 30 cm, with

wind speed = 0 m/s.
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Figure B.13: Shack-Hartmann WFS, r0 = 20 cm, wind speed = 0 m/s
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Figure B.14: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 0 m/s
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Figure B.15: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 0 m/s
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B.2.2 wind speed = 5 m/s

For these runs, the FPF WFSs still show significant improvement, but the

diffractive case is starting to show some strain.
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Figure B.16: Shack-Hartmann WFS, r0 = 20 cm, wind speed = 5 m/s
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Figure B.17: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 5 m/s
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Figure B.18: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 5 m/s
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B.2.3 wind speed = 10 m/s

As with the runs in figure B.9, the FPF loop with diffraction is not stable.

Unlike that case, the system does not return to stability in the stiffer wind.
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Figure B.19: Shack-Hartmann WFS, r0 = 20 cm, wind speed = 10 m/s
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Figure B.20: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 10 m/s
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Figure B.21: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 10 m/s
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B.2.4 wind speed = 20 m/s

Here, while the ideal three bin loop is still showing excellent performance,

the diffractive three bin loop is growing more unstable. It appears that it is

sensing noise as wavefront perturbations.
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Figure B.22: Shack-Hartmann WFS, r0 = 20 cm, wind speed = 20 m/s
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Figure B.23: Ideal Three Bin WFS, r0 = 20 cm, wind speed = 20 m/s
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Figure B.24: Three Bin with diffraction WFS, r0 = 20 cm, wind speed = 20 m/s
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B.3 r0 = 15 cm

With an r0 value of 15 cm, the results for each of the three systems are fairly

independent of wind speed: The Shack-Hartmann system is having problems

due to low light levels; the ideal three bin loop is correcting well; and the three

bin loop with diffraction starts to correct, but then runs into problems as mea-

surement noise causes it to become unstable.
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Figure B.25: Shack-Hartmann WFS, r0 = 15 cm, wind speed = 0 m/s
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Figure B.26: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 0 m/s
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Figure B.27: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 0 m/s
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B.3.2 wind speed = 5 m/s
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Figure B.28: Shack-Hartmann WFS, r0 = 15 cm, wind speed = 5 m/s

154



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

Ideal Three Bin: NOP
r
0
 = 15 cm, wind speed = 5 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure B.29: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 5 m/s
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Figure B.30: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 5 m/s
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B.3.3 wind speed = 10 m/s
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Figure B.31: Shack-Hartmann WFS, r0 = 15 cm, wind speed = 10 m/s
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Figure B.32: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 10 m/s
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Figure B.33: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 10 m/s
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B.3.4 wind speed = 20 m/s
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Figure B.34: Shack-Hartmann WFS, r0 = 15 cm, wind speed = 20 m/s

158



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

Ideal Three Bin: NOP
r
0
 = 15 cm, wind speed = 20 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure B.35: Ideal Three Bin WFS, r0 = 15 cm, wind speed = 20 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

Three Bin with diffraction: NOP
r
0
 = 15 cm, wind speed = 20 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure B.36: Three Bin with diffraction WFS, r0 = 15 cm, wind speed = 20 m/s
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B.4 r0 = 12 cm

With the atmosphere degrading to an r0 of 12 cm, the ideal three bin cor-

rector is beginning to have problems. The first case in which this shows up is

where there is no wind. This is possibly due to problems that the phase un-

wrapping routines in the DiagnosticPlane system (see figure 8.2) have when

the phase field is noisy. The unwrapping routines have fewer problems when

there is at least a slight wind because the correlation in the underlying phase

field tends to ensure that there are fewer misidentified breaks in the unwrapped

field.
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Figure B.37: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure B.38: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure B.39: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s
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B.4.2 wind speed = 5 m/s
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Figure B.40: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure B.41: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure B.42: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s
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B.4.3 wind speed = 10 m/s
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Figure B.43: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure B.44: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure B.45: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s
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B.4.4 wind speed = 20 m/s
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Figure B.46: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure B.47: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure B.48: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s
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B.5 r0 = 9 cm

An r0 of 9 cm is the first case where the three bin loop with diffraction does

not correct for a time before becoming unstable.

B.5.1 wind speed = 0 m/s
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Figure B.49: Shack-Hartmann WFS, r0 = 9 cm, wind speed = 0 m/s
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Figure B.50: Ideal Three Bin WFS, r0 = 9 cm, wind speed = 0 m/s
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Figure B.51: Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 0 m/s
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B.5.2 wind speed = 5 m/s
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Figure B.52: Shack-Hartmann WFS, r0 = 9 cm, wind speed = 5 m/s
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Figure B.53: Ideal Three Bin WFS, r0 = 9 cm, wind speed = 5 m/s
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Figure B.54: Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 5 m/s
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B.5.3 wind speed = 10 m/s
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Figure B.55: Shack-Hartmann WFS, r0 = 9 cm, wind speed = 10 m/s
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Figure B.56: Ideal Three Bin WFS, r0 = 9 cm, wind speed = 10 m/s
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Figure B.57: Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 10 m/s
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B.5.4 wind speed = 20 m/s
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Figure B.58: Shack-Hartmann WFS, r0 = 9 cm, wind speed = 20 m/s
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Figure B.59: Ideal Three Bin WFS, r0 = 9 cm, wind speed = 20 m/s
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Figure B.60: Three Bin with diffraction WFS, r0 = 9 cm, wind speed = 20 m/s
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B.6 r0 = 6 cm

The DM is almost at it’s design limits when trying to correct for turbulence

with an r0 of 6 cm as it is for these runs.

B.6.1 wind speed = 0 m/s
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Figure B.61: Shack-Hartmann WFS, r0 = 6 cm, wind speed = 0 m/s
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Figure B.62: Ideal Three Bin WFS, r0 = 6 cm, wind speed = 0 m/s
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Figure B.63: Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 0 m/s
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B.6.2 wind speed = 5 m/s
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Figure B.64: Shack-Hartmann WFS, r0 = 6 cm, wind speed = 5 m/s
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Figure B.65: Ideal Three Bin WFS, r0 = 6 cm, wind speed = 5 m/s
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Figure B.66: Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 5 m/s
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B.6.3 wind speed = 10 m/s
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Figure B.67: Shack-Hartmann WFS, r0 = 6 cm, wind speed = 10 m/s
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Figure B.68: Ideal Three Bin WFS, r0 = 6 cm, wind speed = 10 m/s
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Figure B.69: Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 10 m/s
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B.6.4 wind speed = 20 m/s
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Figure B.70: Shack-Hartmann WFS, r0 = 6 cm, wind speed = 20 m/s
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Figure B.71: Ideal Three Bin WFS, r0 = 6 cm, wind speed = 20 m/s
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Figure B.72: Three Bin with diffraction WFS, r0 = 6 cm, wind speed = 20 m/s

183



B.7 r0 = 3 cm

At an r0 of 3 cm, the system is beyond the limits of its design. What is

surprising is that the ideal three bin loop is able to correct the slight amount

that it does.

B.7.1 wind speed = 0 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Shack−Hartmann: NOP
r
0
 = 3 cm, wind speed = 0 m/s

Time (s)

P
h
a
s
e
 E

rr
o
r 

(r
a
d
)

Closed loop
Open loop

Figure B.73: Shack-Hartmann WFS, r0 = 3 cm, wind speed = 0 m/s
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Figure B.74: Ideal Three Bin WFS, r0 = 3 cm, wind speed = 0 m/s
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Figure B.75: Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 0 m/s
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B.7.2 wind speed = 5 m/s
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Figure B.76: Shack-Hartmann WFS, r0 = 3 cm, wind speed = 5 m/s
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Figure B.77: Ideal Three Bin WFS, r0 = 3 cm, wind speed = 5 m/s
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Figure B.78: Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 5 m/s
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B.7.3 wind speed = 10 m/s
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Figure B.79: Shack-Hartmann WFS, r0 = 3 cm, wind speed = 10 m/s
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Figure B.80: Ideal Three Bin WFS, r0 = 3 cm, wind speed = 10 m/s
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Figure B.81: Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 10 m/s
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B.7.4 wind speed = 20 m/s
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Figure B.82: Shack-Hartmann WFS, r0 = 3 cm, wind speed = 20 m/s
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Figure B.83: Ideal Three Bin WFS, r0 = 3 cm, wind speed = 20 m/s
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Figure B.84: Three Bin with diffraction WFS, r0 = 3 cm, wind speed = 20 m/s
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Appendix C

NOP CORRECTOR PLOTS II

This appendix collects the detailed plots resulting from the simulations run

with the model of the continuous facesheet DM at NOP and with an aperture

averaged power over the pupil of 8 µW. The text in section 8.4 sumarizes these

results.
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Figure C.1: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure C.2: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure C.3: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s
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WIND SPEED = 5 m/s
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Figure C.4: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure C.5: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure C.6: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s
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WIND SPEED = 10 m/s
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Figure C.7: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure C.8: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure C.9: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s
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WIND SPEED = 20 m/s
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Figure C.10: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure C.11: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure C.12: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s
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Appendix D

NOP CORRECTOR PLOTS III

This appendix collects the detailed plots resulting from the simulations run

with the model of the continuous facesheet DM at NOP and with an aperture

averaged power over the pupil of 13.5 µW. The text in section 8.5 sumarizes

these results.
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Figure D.1: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure D.2: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 0 m/s
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Figure D.3: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 0 m/s
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WIND SPEED = 5 m/s
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Figure D.4: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure D.5: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 5 m/s
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Figure D.6: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 5 m/s
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WIND SPEED = 10 m/s
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Figure D.7: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure D.8: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 10 m/s
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Figure D.9: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 10 m/s
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WIND SPEED = 20 m/s
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Figure D.10: Shack-Hartmann WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure D.11: Ideal Three Bin WFS, r0 = 12 cm, wind speed = 20 m/s
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Figure D.12: Three Bin with diffraction WFS, r0 = 12 cm, wind speed = 20 m/s
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Appendix E

RESCALING

We can now characterize five major physical parameters of the system com-

ponents in terms of the turbulence strength. In table (E.1) we see a summary of

Number of actuators N0 =

(D
r0

)2

Tip-Tilt magnitude ∆tt = λ

(D
r0

)5/6

Full aperture dynamic range ∆ap = .22 ·∆tt

Inter-actuator dynamic range ∆IA =
.36

4√N0
·∆tt

System cutoff frequency fc =
.426
(

σ2
t
)3/5

layers

∑
l=1

vwl
r0l

Table E.1: System constraints

the parameters and how they can be evaluated. There are a few things to note.

First, recall that in the discussion of the number of actuators noticeable gains in

performance can be achieved if the number of actuators is increased from N0

to anything up to about 4N0. However, an increase in the number of actuators

will normally lead to corresponding increase in the numbers of detectors used

by the wavefront sensor and thus to a decrease in the sensitivity of wavefront

sensor (see page 41).

Second, note that the system cutoff frequency is, unlike the other parame-

ters, independent of the entrance pupil diameter. It is also the only parameter
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that requires some detailed knowledge of the vertical structure of the atmo-

sphere at the site. The other parameters are characterized by the turbulence

statistics at either the wavefront sensor plane or the wavefront corrector plane.

This makes it difficult to parameterize a system’s frequency response without

careful study of a site. It also means that there aren’t any simple rescaling for-

mulas for changes in the site parameters or wavelength. For that reason the

rest of the section will not consider rescaling of fc.

E.1 A change in r0

Since all four of the parameters of interest vary inversely with a power of

r0, the rescaling expressions are straightforward:

N0new = N0old

( r0old
r0new

)2
(E.1)

∆ttnew = ∆ttold

( r0old
r0new

)5/6
(E.2)

∆apnew = ∆apold

( r0old
r0new

)5/6
(E.3)

∆IAnew = ∆IAold

( r0old
r0new

)5/6
(E.4)

E.2 A change in λref

A change in the reference wavelength is somewhat trickier, however, since

a dependency on λref is contained in r0. The formula for rescaling r0 versus

λref is shown in equation (3.5). This can be used directly in the expression for
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scaling N0 in terms of λref :

N0new = N0old

(

λrefold

λrefnew

)12/5

(E.5)

From equation (4.15), the equation for the tip-tilt magnitude versus a change in

operating wavelength is

(

∆ttnew
λrefnew

)6/5
r0new =

(

∆ttold
λrefold

)6/5
r0old

∆ttnew
λrefnew

=
∆ttold
λrefold

(

r0old
r0new

)5/6

∆ttnew = ∆ttold
λrefnew
λrefold

(

r0old
r0new

)5/6

∆ttnew = ∆ttold
λrefnew
λrefold

λrefold
λrefnew

∆ttnew = ∆ttold .

(E.6)

So, unless there are chromatic effects caused by the particular wavefront cor-

rector and tip-tilt correction system, if the dynamic range is sufficient at a given

wavelength it is sufficient for all wavelengths. A change in wavelength will still

affect the level of correction, however, since the number of actuators for a given

level of correction is not invariant to the reference wavelength.
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E.3 A change in D

Like changes with respect to r0, these relations are simple:

N0new = N0old

(Dnew
Dold

)2
(E.7)

∆ttnew = ∆ttold

(Dnew
Dold

)5/6
(E.8)

∆apnew = ∆apold

(Dnew
Dold

)5/6
(E.9)

∆IAnew = ∆IAold

(Dnew
Dold

)5/6
(E.10)
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