Scaling Law Modeling of Thermal Blooming in Wave Optics

Amy M. Ngwele, Associate Scientist
Matthew R. Whiteley, PhD, Vice President

November 2, 2006

DEPS Directed Energy Symposium
Albuquerque, NM
Abstract

● Relationship between peak irradiance reduction (Strehl) and distortion number for uniform beam. Scaling law previously anchored for Gaussian.
 ○ Overview of Thermal Blooming
 ○ Define Strehl
 ○ Difference between uniform and Gaussian
 ○ Data and Results

● Found dependence of distortion number on the path
Thermal Blooming

- Absorption of a high energy laser propagating in atmosphere causes heating of the air around the beam, changing its optical properties (refractive index)
- The change in refractive index induces a phase variation across the beam resulting in spread (blooming) and a crescent shape
- The phase is typically characterized by distortion number

\[
N_d = \frac{4\sqrt{2}k_0}{\rho_0 C_p} \int_0^L dz \frac{n_T(z) \alpha(z)}{V(z) D(z)} \times P \int_0^z dz' \exp\{\alpha(z') + s(z')\}
\]

- Can derive relationship between distortion number and peak irradiance reduction

\[
S = (1 + f(N_d))^{-1}
\]

- \(P\) = laser power
- \(k_0\) = wavenumber, \(2\pi/\lambda\)
- \(\rho_0\) = density of air at sea level
- \(C_p\) = heat capacity at constant pressure
- \(n_T\) = \(\frac{dn}{dT} = (n_0 - 1)/T\)
- \(L\) = propagation path length
- \(V\) = beam clearing speed \(\perp\) to propagation
- \(D\) = beam diameter along path
- \(\alpha\) = absorption coefficient along path
- \(s\) = scattering coefficient along path
Path Effects on \(N_d \)

- Absorption profile, \(\alpha(z) \), varies with scenario

- Attenuation of power along path
 \[
 P(z) = P \int_0^z dz' \exp \left\{ -[\alpha(z') + s(z')] \right\}
 \]

- Beam clearing speed, \(V(z) \), varies with scenario

- Beam size, \(D(z) \), is only parameter for which we have to make an assumption
 \[
 g_1 = \frac{D}{2} \left(1 - \frac{z}{f} \right), \quad g_2 = \frac{4z}{k_0 D}
 \]
 \[
 D(z) = 2 \sqrt{g_1^2 + g_2^2}
 \]
Define Strehl as ratio of peak irradiance with blooming (wherever it occurs) to peak irradiance in vacuum with the same power on target

\[S = \frac{I_{pk}}{I_{pk_{vac}}} \]

Written another way

\[
P = I_{pk} \int dx \int dy \frac{I(x, y)}{I_{pk}} = A
\]

\[
A \equiv \int dx \int dy \frac{I(x, y)}{I_{pk}} \quad A = I_{pk_{vac}}A_{vac} \quad \text{(energy conservation)}
\]

\[
\rightarrow S = \frac{A_{vac}}{A} = \frac{\sigma_{X_{vac}} \sigma_{Y_{vac}}}{\sigma_X \sigma_Y}
\]

\[
= \left[\left(\frac{\sigma_X}{\sigma_{X_{vac}}} \right) \left(\frac{\sigma_Y}{\sigma_{Y_{vac}}} \right) \right]^{-1}
\]
Uniform vs. Gaussian

S = 84%
Uniform, HELPower = 5 kW, S = 0.84359

S = 66%
Uniform, HELPower = 10 kW, S = 0.65901

S = 43%
Uniform w/ Blooming, S = 0.43327

S = 47%
Gaussian, HELPower = 5 kW, S = 0.46727

S = 17%
Gaussian, HELPower = 10 kW, S = 0.17246

S = 6%
Gaussian, HELPower = 20 kW, S = 0.056401

P = 5 kW
P = 10 kW
P = 20 kW
Motivation for Path Weighting – Strategic Scenario

- Wave optics yields approximately same Strehl for 0 and 5 km altitude targets
- Theoretical distortion number calculation gives very different results for 0 and 5 km altitude targets, factor of 3 difference
- Scaling law is overestimating the effect for very low altitude targets
Ran wave optics simulation for three generic geometries with 15 km path length from platform to target

- **Uplooking:**
 - Platform alt – 1 m
 - Target alt – 4000 m

- **Downlooking:**
 - Platform alt – 4000 m
 - Target alt – 1 m

- **Level:**
 - Platform alt – 1500 m
 - Target alt – 1500 m

Atmosphere

- Absorption/Scattering – follow logarithmic scaling
- Uniform natural wind, 10 m/s, transverse to beam path

[Graph showing Strehl with Theoretical Distortion Number]
Calculated distortion numbers for a down-looking geometry typically overestimate the effect of blooming while calculation for up-looking geometries underestimate.

This motivates a path weighting of the distortion number.
Path Weighting Determination

- Waveoptics runs with uniform extinction. One screen is an absorbing screen and is moved along the path toward the target.

- There is a point in the path at which the distortion reaches a maximum, and after which the distortion decreases as the blooming screen is moved further toward the target.
Strehls for single screen runs

- **D = 10 cm**
 - \(D = 0.1, \lambda = 1315, \text{rd} = 10000, \text{focus} = 10002\)
 - **D = 20 cm**
 - \(D = 0.2, \lambda = 1315, \text{rd} = 10000, \text{focus} = 10002\)
 - **D = 30 cm**
 - \(D = 0.3, \lambda = 1315, \text{rd} = 10000, \text{focus} = 10002\)
 - **D = 50 cm**
 - \(D = 0.5, \lambda = 1315, \text{rd} = 10000, \text{focus} = 10002\)
Point of Maximum Distortion

- Point of maximum distortion was found to correspond to the point in the path where the size of the beam in vacuum would start to be affected by diffraction

\[g_1 = \frac{D}{2} \left(1 - \frac{z}{f}\right), \quad g_2 = \frac{4z}{k_0 D} \]

- Fresnel number dependence on position of maximum distortion, \(g_2 = 0.5 \, g_1 \)

\[x_{pk} = \frac{N_f}{4 + N_f}, \quad \text{where} \quad N_f = \frac{2\pi D^2}{\lambda \, 4L} \]
- Using wave-optics Strehl in fit to level path data for Strehl vs. \(N_d \)
- Normalize by \(N_d \) to get form of path weighting
Distortion Number Path Weighting

- Peak moves toward platform with smaller aperture.
- Maximum of path weighting approximately constant = 3

\[w(x) = 3 \frac{w(x)}{w(x_{pk})} \]

\[w(x) = \begin{cases}
\sin \left(\pi(1-x) - \log(2)/\log(1-x_{pk}) \right)^4 + w_{tails}(x) & x_{pk} < 0.5 \\
\sin \left(\pi x - \log(2)/\log(x_{pk}) \right)^4 + w_{tails}(x) & x_{pk} \geq 0.5
\end{cases} \]

\[w_{tails}(x) = 0.5x_{pk} \exp \left(- \left(\frac{x - x_{pk}}{x(1-x)/(x_{pk}^4)} \right)^2 \right) \]
Normalized distortion parameter, single screen runs

D = 10 cm

D = 0.1, $\lambda = 1315$, $rd = 10000$, focus = 10002

D = 20 cm

D = 0.2, $\lambda = 1315$, $rd = 10000$, focus = 10002

D = 30 cm

D = 0.3, $\lambda = 1315$, $rd = 10000$, focus = 10002

D = 50 cm

D = 0.5, $\lambda = 1315$, $rd = 10000$, focus = 10002
To bring uplooking and downlooking geometries together, introduced transmission scaling, γ

$$\gamma_0 = \frac{\alpha_N - \alpha_1}{2\alpha T_{Scat}}$$

$$\gamma = \begin{cases}
\gamma_0 - 0.1 \left(1 - e^{2(0.4 - \gamma_0)}\right), & \gamma_0 < 0.4 \\
\gamma_0, & \gamma_0 \geq 0.4
\end{cases}$$

γ_0 = Initial calculation of transmission scaling
T_{Scat} = Transmission due to scattering over entire path
α_i = Extinction coefficient for the ith segment
α = Mean extinction coefficient
where \(N_d'(z) \) is the integrand in equation for \(N_d \), then

\[
N_{d,Ipk} = \gamma \int_0^I w(z) N_d'(z) dz
\]
Remarks

- Starting from the Bradley Herrmann definition of distortion number, the only assumption made is beam size.

- Beam size at some point in the path is computed as the combination of the effects of focus and diffraction based on Gaussian beam assumptions, and does not include any effects due to thermal blooming prior to that point in the path.

- The transmission scaling factor can be thought of as a modification to the computed beam size to account for changes due to thermal blooming in the path.

\[
N_{dIpk} = \int_0^L w(z) \frac{N_d(z)D(z)}{D_{eff}(z)} \, dz
\]

where \(D_{eff}(z) = \frac{D(z)}{\gamma} \)
Conclusion

- Path weighting and transmission scaling of distortion number - excellent agreement with wave optics
- Anchoring with tactical and strategic engagements

Reference