
1

Introduction to tempus

MZA Associates Corporation

Bob Praus & Steve Coy
praus@mza.com

2021 Girard Blvd. SE, Suite 150
Albuquerque, NM 87106

voice: (505)245-9970, ext. 111

Short Course

Certain features of tempus are Patent Pending
Contact MZA for details of our proprietary claims

2

Computer simulation has become an important tool in many fields of
endeavor, from science and engineering to computer based training and
computer animation. Over the years considerable progress has been made in
tools and methodologies for simulation, but much of this progress has come in
the form of improvements to a variety of relatively specialized tools, for
modeling control systems, flexible structures, fluid dynamics, communication
networks, and so forth. By comparison, relatively little progress had been
made in tools designed to support interdisciplinary simulation, involving
interactions among subsystems with qualitatively dissimilar behaviors and
requiring differing modeling approaches.

tempus is a simulation executive that uses a powerful and flexible block
diagram-based architecture designed to meet the demands of interdisciplinary
simulation. Combining ideas from object-oriented programming and hybrid
simulation, tempus can be used to model just about anything. It has an open
architecture, which makes it easy to integrate other software into tempus, and
vice versa. This course provides an introduction to the application of tempus to
the development of large, complex, and interdisciplinary models.

Course Abstract

3

• Explain the motivation for the existence and design of tempus.

• Explain how to use tempus.

• Explain how to develop models with tempus, including developing
new source code capabilities.

Course Objectives

The terminologies of computer programming and simulation are not always
standardized. The terms and concepts used throughout this lesson may have
broader meanings than that which is used here.

4

Authors
Bob Praus praus@mza.com

Steve Coy coy@mza.com

MZA Associates Corporation www.mza.com

5

Acknowledgments
Building on broader concepts in the technical communities, the
fundamental ideas in tempus have been in development for more than
two decades. Steve Coy is the primary designer and authored the
current distribution version. Bob Praus helped write tempus and has
applied it more than anyone. A lot of people have helped along the way.
Don Washburn, Russ Butts & Roy Hamil AFRL funding & encouragement

Gregory Gershanok GUI developer and code integrator

Ali Boroujerdi & Steve Verzi Authors of newer kernel prototypes

Zane Dodson Design and authoring of advanced features

Bill Klein Design assessment & code integration

Alex Zokolov Advanced GUI and visualization development

Liyang Xu, Tim Berkopec, Boris Venet Developers and users of tempus systems
Robert Suizu, Brent Strickler, Bill Gruner,
Keith Beardmore, Justin Mansell,
Morris Maynard, & Tony Seward

We would also like to thank the DEPS for providing this forum.

6

References
• Modeling and Simulation

– http://en.wikipedia.org/wiki/Simulation#Computer_simulation
– http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html
– http://www.ecs.umass.edu/ece/labs/codes/bktoc.html
– http://www.imaginethatinc.com/sols_simoverview.html
– http://www.ici.ro/ici/revista/sic2002_1/art05.htm

• Object-oriented Programming
– http://en.wikipedia.org/wiki/Object-oriented_programming

• The C++ Programming Language
– http://www.pcai.com/web/ai_info/pcai_cpp.html
– http://public.research.att.com/~bs/
– http://www.cppforlife.tk/

7

Modeling and simulation concepts 1300
Time-domain and discrete event modeling
Composition-based modeling
Isomorphic modeling
Multi-modeling
Simulation executives
Object-oriented modeling in C++

The tempus paradigm 1400
Overview
tempus visual editor
tempus concepts
Connection-driven execution 1500
tempus source form

The future of tempus 1630

Agenda

8

Modeling and Simulation Concepts

Time-domain and discrete event modeling

Composition-based modeling

Isomorphic modeling

Multi-modeling

Simulation executives

Object-oriented modeling in C++

9

• Simulation: the technique of imitating the behavior of some situation
or system (economic, mechanical, etc.) by means of an analogous
model, situation, or apparatus, either to gain information more
conveniently or to train personnel. (Oxford Eng. Dictionary)

• Time-domain modeling: a technique in which the performance of a
system is simulated by predicting the state of the system as a function
of time.

• Discrete event-driven modeling: a time-domain simulation technique in
which the logic of the simulation is primarily governed by specific
events which occur within the modeled system.

Modeling and Simulation Concepts
(1 of 2)

10

• Composition-based modeling: the process of building software
models by combining smaller, more fundamental, software
components.

• Multi-modeling: the use of composition-based modeling in
interdisciplinary physical modeling problems.

• Variable fidelity modeling: the process of building and employing a
model which has multiple levels of fidelity.

• Isomorphic: exactly corresponding in form and relations. (Oxford Eng.
Dictionary)

• Isomorphic modeling: the design and implementation of a model using
isomorphism as a prevailing guiding principle.

Modeling and Simulation Concepts
(2 of 2)

11

• Software tools meant to assist in the development and use of
simulations.

• Usually specific to a particular domain.
• One would rarely use the simulation executive if one were not

interested in the particular domain to which the simulation executive
applies.

• Generally not appropriate for large simulations.
• Usually composition-based.
• Methods to expand the library of models is limited.
• Component behavior is usually limited to a particular fundamental

modeling approach.
• Examples: Simulink, Easy5, acslXtreme, Systembuild, SPICE

Simulation Executives

12

Modeling and Simulation Concepts

Time-domain and discrete event modeling

Composition-based modeling

Isomorphic modeling

Multi-modeling

Simulation executives

Object-oriented modeling in C++

13

• A computer programming paradigm in which a
program is based on a collection of individual
units, or objects, that act on each other, as
opposed to a traditional (procedural) paradigm in
which a program may be seen as a collection of
functions or procedures, or simply as a list of
instructions to the computer. Each object is
capable of receiving messages, processing data,
and sending messages to other objects.
(Wikipedia)

Object-Oriented Programming

14

Object Oriented Programming
The Benefits

• Benefits of OOP
– Facilitates the application of isomorphism - the programming practice of

implementing a one-to-one correspondence between segments of code and
modeled entities.

– Facilitates modularity of both code and data.
– Facilitates the application of polymorphism - the programming practice of using

the same code for different objects which have common characteristics.
– High-level (executive) code is highly readable.

• Benefits of C++
– Both widespread and highly supported.
– Very efficient (largely because it is based on C).
– Supports the implementation of both high-level (executive) and low-level (math

and bit-twiddling) code.

There are a lot of advantages to OOP. See Object-Oriented Analysis and
Design by Grady Booch for more complete information.

15

Object Oriented Programming
The Perils (because you can)

• Perils of OOP
– OOP codes are susceptible to over-design -- churning over the design of a particular feature

without any real benefit (because you can).
– OOP codes are susceptible to over-implementation -- coding an object such that it can do

any conceivable operation (because you can) when all that is really necessary is meeting
current requirements. This results in wasted effort and a legacy of untested code because
many routines are never used.

– As a result of the two previous susceptablities, OOP codes can become spaghetti codes of
a new sort. This particular form of tangularity results in practically every line of code being a
reference to code in some other compilation unit. Finding bugs then involves a lot of
unnecessary hopping around between source files.

– Programmers can mistakenly rely on the OOP model as a substitute for true innovation
(because you can) .

• Perils of C++
– C++ arrays are inflexible (especially multi-dimensional arrays). For mathematical codes, this

results in having to implement a substitute.
– C++ pointers are dangerous. Memory leaks and dangling pointers are common.
– C++ templates can be bad. Don’t use them unless you know what you are doing.
– C++ has obtuse syntax. Low-level code can be difficult to read.

Despite these dangers, using OOP within C++ is probably the most flexible and powerful
contemporary approach to developing a complex application which is both portable and
efficient.

16

Base Classes and Virtual Methods
Classes, base classes and virtual methods are all standard
terms used in object-oriented programming.

A class is language-level construct which can be used to
encapsulate a well-defined software representation of a specific
category of objects, including both its data members and its
behavior.

A class can inherit attributes (data and/or behavior) from one or
more other classes, called its base classes. Some classes, like
System in tempus, are specifically designed to be used as base
classes.

Virtual methods are “stub” functions defined in a base class
which can be re-defined by derived classes. Virtual methods
are used to define standardized interfaces for customizable
behaviors.

17

C++ Templates
• Templates are a way of implementing C++ functions

and classes in a type-neutral kind of way.
• The Type of interest is specified to the Template code

at compile time and the appropriate code is generated
taking into account fairly generic aspects of the
underlying type.

• This is how one might implement a vector of integers
with essentially the same code as they might implement
a vector of floats.

• Templates can also be used to specify other compile-
time attributes.

18

C++ Code
Base class:

class TRect {
public:

// data members
short fTop;
short fLeft;
short fBottom;
short fRight;
// member functions
virtual short Area(void);
Boolean PointInRect(Point thePt);

};

Class which uses inheritance:

class TRoundRect : public TRect {
protected:

// added data members
short fHOval;
short fVOval;
// override the area member function
virtual short Area(void);

};

Template class:

template<class T> class vector {
T* v;
int sz;

public:
vector (int);
T& operator[] (int);
T& elem(int i) { return v[i]; }
// ...

};

Using Classes:

int top, left, bottom, right;
...
TRect r(top, left, bottom, right);
TRoundRect rr(top, left, bottom, right);

vector<float> vf(5);
vf[0] = (r.area() + rr.area())/2.0;

vector<int> vi(4);
vi[0] = top;
vi[1] = left;
vi[2] = bottom;
vi[3] = right;

19

The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution

tempus source form

20

tdemo1 Example
• To provide

context, we'll go
to a short
demonstration the
creation,
execution,
examination, and
manipulation of a
simple tempus
user application.

21

tempus Process Flow

system editor

runset editor

• Construct & modify
tempus Systems

• Create Atomic
System templates

programming

• Visualize and analyze
results

• Write Atomic Systems
• Debug applications

• Create test cases
• Devise parametric

studies

analysis

The process supports
tempus System
development,

debugging, and
analysis

22

#include "tempus.h"

#include "TopLevel.h" Notional Generated Code

int main(int argc, char* argv[])
{

Universe u(NULL, "u");
int p1 = 2;
double p2 = 3.1415;
for (iloop=0; iloop<nloop; iloop++)
{

double p3 = iloop * p1 * p2;
TopLevel t(u, "t", p1, p2, p3);
Recorder r(u, "r");
r.i <== t.ss.o;
u.advanceTime(stopTime);

}
}

class TopLevel : public System {
public:

int p1;
double p2;
double p3;
Subsystem ss;
TopLevel(System* p, char* n, int _p1,...) :

System(p, n),
p1(_p1), p2(_p2), p3(_p3), ss(p1, p2, p3)

{
...
}; ...

}

tempus User Applications
tempus kernel

Classes

Universe

System
Input<T>

Output<T>

tempus Utilities

Recording

Numerical Library

User Libraries

Libraries of
Systems

Utility Code

system editor

runset editor

User Code

23

The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution

tempus source form

24

tempus Visual Editor

The tve window used to set up and execute
tempus simulations.

tre – tempus
runset editor

The tve window used to create, configure, and
edit tempus Systems.

tse – tempus
system editor

The graphical user interface (GUI) through
which the user constructs tempus models and
sets up and executes tempus simulations.
Given user inputs, the tve generates code
which is compiled and linked with user-written
code to create and execute user applications.

tve – tempus
visual editor

DescriptionConcept

25

tve & tse

26

tve & tre

27

The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution

tempus source form

28

Variables, Types, and Names
• Systems, Inputs, Outputs, and Parameters are

implemented as programming variables and all have
types and names.

• Type refers to the particular data type of the entity. In
this usage, type and class are nearly synonymous.
– All Systems are of some Type which must be derived from class

System. So all Systems are classes.
– All Inputs and Outputs have a type, but not through inheritance.

Rather, Inputs and Outputs get their type through a template
argument. The type can be just about any valid C++ type, but it
must support a few standard operations. The GUI hides the details
concerning the use of templates.

– Parameters are simple variables of a user-specified type. The type
which can be simple, such as float or int or more complex, such
as an arbitrary class. The type can be just about any valid C++
type, but it must support a few standard operations.

• Name refers to the name of the particular variable
within the context that it resides.

29

Types and names in the tve

Types Names Values

30

tempus Classes

A top-level executive object which controls the
order of System execution and the passage of
time.

Universe

The primary mechanism through which a System
can effect other Systems.

Output<T>

The primary mechanism through which a System
is affected by other Systems.

Input<T>

The base class for the fundamental building
block of tempus applications. Specific Systems
can be automatically generated or user-written.
Systems are configured by their Parameters and
contain Inputs and Outputs in facilitate time-
domain interfaces with other Systems.

System

DescriptionClass

31

Categories of Systems

A System which contains all other Systems in a
particular tempus user application.

Top-level
System

A System contained in another System. Almost all
Systems are Subsystems because all Systems,
except the very top-level System, is contained by
another.

Subsystem

A System written to carry-out computations of
specific interest. Ultimately, all of the meaningful
computation of a tempus user application is done
by an Atomic System.

Atomic
System

A System composed of one or more Systems.
Composite Systems are typically (but don't have to
be) generated by the tempus system editor.

Composite
System

DescriptionConcept

32

tempus Parametric Concepts

The collection of information which specifies the
Parameter values for a set of user application
executions. The Runset specifies the Parameter
values for the Top-Level System which Outputs
are to be recorded.

Runset

The mechanism through which Systems are
configured. The values of Parameters are
provided to Systems through constructor
arguments, so they are only effective in
specifying static initialization inputs. Parameters
of Subsystems are often specified by
expressions involving Parameters of the System
that contains them.

Parameter

DescriptionConcept

33

tempus Concepts
System Parameters

34

tempus Concepts
System Parameters Flow Down from Containing Systems

35

tempus Concepts
Runsets

Runsets…
• define the values of

all parameters which
the model-builder has
“flowed-up” to the
user.

• provide a
configuration
management tool for
defining the inputs of
a run.

• are used to set up
parametric studies,
allowing parameters
to be changed
systematically.

• definitions help to
define how work is
distributed across
multiple processors.

36

tempus concepts
Block Parameters Flow Down from Runset

37

Concepts Not Detailed in This Course

Another class which helps implement
Recallability.

SaveVariable<T>

The class through which Recallability is
implemented.

Recallable<T>

The mechanism through which Systems
can request the values of their input for
some time in the past.

Recallability

DescriptionConcept

38

The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution

tempus source form

39

tempus Concepts
Inputs, Outputs, and Connectivity

40

Input and Output Types
• Inputs and Outputs are template-typed

classes.
• Inputs and Outputs can be of nearly any

valid C++ type.
• Connections are only made between two

entities of the same type.
• Provisions have been made to provide

automatic conversions between types
which are nearly compatible.

41

Three Types of Connections

Subsystem Outputs can become
Outputs of the containing
Composite System.

Subsystem Output
to

Composite System Output
o <<= ss.o

Composite System Inputs are
routed to its Subsystem Inputs.

Composite System Input
to

Subsystem Input
ss.i <<= i

The most intuitive type of
connection feeds a Subsystem's
Output to a Subsystem's Input.

Subsystem Output
to

Subsystem Input
ss1.i <<= ss2.o

DescriptionConnection

42

Default Behaviors

Default values for an Input can be
specified so that the Input does not have
to be externally connected.

Default Value
assigned to

Input

Default values for System Outputs can
be specified to provide an output value
in the situation that a Subsystem Output
is not eventually connected to it.

Default Value
assigned to

System Output

DescriptionConcept

43

Connections in the tve

Subsystem Output
to

Subsystem Input
switchvf.v0 <<= limitvf.vout

Subsystem Output
to

Subsystem Input
limitvf.v <<= sine.v

Subsystem Output
to

Subsystem Input
switchvf.v1 <<= sine.v

Composite System Input
to

Subsystem Input
switchvf.flag <<= flag

Subsystem Output
to

Composite System Output
v <<= switchvf.v

Default Value
(not used because

it is connected)

Default Values
not used used

Note: A Subsystem Input cannot have two connections

44

Connection-driven Execution

System
respondToWarning respondToInputWarning

attempt
to

access

attempt
to

modify

value

respondToWarning

value

Input Output

Universemain

scheduleNotice
scheduleEvent
cancelEvent

respondToChangedInputs
respondToScheduledEvent

advanceTime

Output Input

respondToOutputRequest

45

System Virtual Methods
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

• Depending on the desired system behavior, the Atomic System
coder writes a System-specific implementation of one or more
virtual methods.

• Composite Systems do not implement the virtual methods
because the behavior of Composite Systems is governed by the
behavior its Subsystems.

• Each of the virtual methods have default logic so that Atomic
Systems do not have to overload methods unrelated to its
desired execution behavior.

46

Input-Driven Logic
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

•respondtoInputWarning(InputBase*) warns a
System that one of its Inputs is about to be changed.

• Before any System changes an Output which is
connected to another System's Input, the Input's System's
respondtoInputWarning(InputBase*) is called.

•respondtoChangedInputs() notifies a System that
one or more of it's inputs has been changed.

47

Output-Driven Logic
(Lazy Evaluation)

class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

• When a System accesses the value of an Input which is
connected to another System's Output, that Output's
System's respondtoOutputRequest(OutputBase)
is called.

48

Event Driven Logic
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

private:
EventId scheduleEvent(double delay, char* descriptor="", void* info=NULL)

...
}

• A System can exercise strong control over it's
execution by scheduling Events for itself by invoking
the scheduleEvent(...) method.

• After the specified amount of time has passed, the
scheduler called the System's
respondToScheduledEvent(const Event&)
method.

49

Complex Producer-Consumer Models

At time t, the receiver asks
the next component
upstream to tell it about the
light incident upon it.

Each intervening component
asks the next component
upstream to tell it about what
light is incident upon it.

Each light source must be
prepared to describe the light
transmitted from it using one
or more “waves”. ----------------

It must provide certain info
about itself: aperture size
and location, field of view,
wavelengths sensed, etc.

It must provide information
about receiver and the optical
path between it and the
receiver.

It must take into account the
information provided about
receiver and the optical path
between it and the receiver.

The source constructs the first
wave, then returns. -------------
--

Each intervening component
operates on the wave, then
returns. -----------------------------

The receiver maps the
wave to its detector plane.--

The receiver then asks the
next component upstream
for the next wave incident
upon it.---------------------------

Each intervening component
asks the next component
upstream for the next wave
incident upon it.

When the source has no more
waves to send, it returns a
NULL.-------------------------------

Each intervening component
then returns a NULL. -----------
--

When the receiver receives
a NULL it knows it has
received all the waves
incident upon it at time t.

The source then checks
whether it needs to send any
more waves. ----------------------

Inputs and Outputs can be of nearly any valid C++ type. The extreme
flexibility of connection-driven execution combined with sophisticated
Input-Output types, can provide extremely complex System interactions.
MZA's wave-optics code is named after its fundamental interface type,
WaveTrain, which provides a two-way dialog between optical components.

50

The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution

tempus source form

51

Code Generation Strategy
• Atomic Systems are built by the tve as System class stubs.

– The programmer is expected to implement virtual methods which define the System’s
behavior.

– Because many systems have common features, inheritance and polymorphism is used a lot.

• Composite Systems are coded as complete Systems
– Parameters are constructor arguments.
– Inputs and Outputs are member objects.
– Subsystems are declared and initialized using expressions involving the parameters of the

system.
– Subsystems are connected using the simple overloaded operator <<=.
– Miscellaneous code handles default unconnected inputs.

• Runsets are coded as the main program.
– The code contains explicit loops for loop variable.
– The run variables and top-level system parameters are declared and set. Run variables and

system parameters which are dependent on loop variables inside the appropriate loops.
– The top-level system is constructed using the system parameters.
– Recording systems are constructed and connected.
– Each run is executed with a call to advanceTime(…).
– There is miscellaneous code which takes care of runset monitoring and setting up the output

trf file.

52

tempus System Examples
DoubleGain : A Composite System

class DoubleGain : public System {
private:

Gain gain1;
Gain gain2;

public:
Input<float> u;
Output<float> y;
DoubleGain(SystemNode* parent, char* name,

float _k1, float _k2) :
System(this,name),
gain1(this,"gain1",_k1),
gain2(this,"gain2",_k2),
u(this,"u"),y(this,"y")

{
gain1.u <<= u;
gain2.u <<= gain1.y;
y <<= gain2.y;

}
};
Composite Systems’ code is usually generated by the GUI.

Gain : An Atomic System

class Gain : public System
{
private:

float k;
public:

Input<float> u;
Output<float> y;
Gain(SystemNode* parent,

char* name,
float _k) :

System(this, name),
k(_k), u(this, "u"), y(this, "y") {}

private:
void respondToInputWarning(InputBase* input)
{

y.warnReferencors();
}
void respondToOutputRequest()
{

y=k*u;
}

};

Atomic Systems' code is written by hand.
In this case, the code in blue is all the
logic that was added. The GUI provided
the rest in the form of a template.

53

tempus SquareWave Example
Atomic system SquareWave uses event-driven logic.

class SquareWave : public System {
private:

float pulseLength;
float pulseInterval;

public:
Output<float> y;
SquareWave(SystemNode parent, char* name,

float _pulseLength,
float _pulseInterval,
float _delay) :

SystemNode(parent, name),
pulseLength(_pulseLength),
pulseInterval(_pulseInterval),
y(this, "y")

{
scheduleEvent(_delay,“begin pulse”);

}
private:

void respondToScheduledEvent(const Event& event)
{

if (event == "beginPulse")
{

y = 1.0;
scheduleEvent(pulseLength, “end pulse”);
scheduleEvent(pulseInterval, “begin pulse”);

}
else if (event == ”end pulse”))
{

y = 0.0;
}

}
};

The code in blue was written by the System
implementer. The rest of the code was
provided by the GUI as a template.

54

tempus Main Program Example
main()
{

SquareWave sw(0.1,0.5,0); // construct a Square Wave.
Gain g(2.0); // construct a Gain
Sampler<float> s(); // construct a Sampler.
g.u << = sw.y; // connect Gain’s input to the SquareWave’s output
s.u <<= g.y; // connect the Sampler’s input to the Gain’s output
advanceTime(100.0); // advance virtual time 100 seconds

}

§ The main program is usually generated by the GUI, but it can be written by hand just as well.

55

tempus Code is Readable
lEach composite system declares and initializes its subsystems:

pointsource(this, "pointsource", wavelength, 1.0e6, 0.0, 0.0),
transversevelocity1(this, "transversevelocity1", -wind, 0.0, 0.0, 0.0),
transversevelocity3(this, "transversevelocity3", wind, 0.0, 0.0, 0.0),
atmosphericpath1(this, "atmosphericpath1",

AcsAtmSpec(wavelength,nscreen,clear1Factor,hPlatform,hTarget,range),
atmoSeed, propnxy, propdxy, 1.8, 0.05,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
propdxy, 0.0, 0.0, 0),

camera1(this, "camera1", 1.0, wavelength, wavelength, apdiam/propdxy,
propdxy, 64, wavelength/apdiam, 0.0),

simplefieldsensor1(this, "simplefieldsensor1", wavelength, apdiam/propdxy, propdxy),
telescope1(this, "telescope1", range, apdiam/2.0, 0.0),
incomingsplitter1(this, "incomingsplitter1"),

l Then the subsystems inputs and outputs are connected:
simplefieldsensor1.incident <<= incomingsplitter1.incomingTransmitted2;
camera1.incident <<= incomingsplitter1.incomingTransmitted;
incomingsplitter1.incomingIncident <<= telescope1.incomingTransmitted;
telescope1.incomingIncident <<= transversevelocity3.incomingTransmitted;
transversevelocity3.incomingIncident <<= atmosphericpath1.incomingTransmitted;
atmosphericpath1.incomingIncident <<= transversevelocity1.incomingTransmitted;
transversevelocity1.incomingIncident <<= pointsource.transmitted;

l Then the simulation is run:
advanceTime(stopTime);

blue names are systems
green names are inputs
red names are outputs

cyan names are regular variables

56

A Complete tempus Run
#include "tempus.h“
#include "Recorders.h“
#include "FileSys.h"

#include "PointSource.h"
#include "AtmoPath.h"
#include "Telescope.h"
#include "Camera.h"

#ifndef NO_TEMPUS_SMF_MONITOR
#include "TempusStatusSMF.h"

#endif

main(int argc, char* argv[])
{
//
// Decoration related to monitoring the system during the run.
//
#ifndef NO_TEMPUS_SMF_MONITOR

double stopTime = 0.0050;
char *___outfile = "WtDemoRunHand.trf";
char *___trfname;
char *___smfname;
parseName(argc, argv, ___outfile, &___smfname, &___trfname, stopTime);
TempusStatusSMFWriter ___smfWriter(___smfname, ___trfname, "", 1);
setCurrentSMF(&___smfWriter);

#endif
Universe ut1("Hand");
//
// Construction of all the systems. Variables could be used in the parameters
// below rather than the constants.
//

PointSource pointsource(NULL, “ps", 1.0e-06, 1.0e+06, 0.0, 0.0);
AtmoPath atmosphericpath(NULL, “ap",

AcsAtmSpec(1.0e-06,10,2.0,2413.0,2728.0,52600.0),
-765432189, 256, 0.02, 1.8, 0.05,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
0.02, 0.0, 0.0, 0);

Telescope telescope(NULL, “tel", 52600.0, 1.5/2.0, 0.0);
Camera camera(NULL, “cam", 1.0, 1.0e-06, 1.0e-06, 1.5/0.02, 0.02, 64,

1.0e-06/1.5, 0.0);

//
// Connection of the systems.
//

atmosphericpath.incomingIncident <<= pointsource.transmitted;
telescope.incomingIncident <<= atmosphericpath.incomingTransmitted;
camera.incident <<= telescope.incomingTransmitted;

//
// Construction and connection of non-connected inputs.
//

Output<bool> camera_on(&camera, "cam_on", true);
Output<double> camera_ei(&camera, "cam_ei", 1.0e-3);
Output<double> camera_el(&camera, "cam_el", 1.0e-6);
Output<double> camera_si(&camera, "cam_si", -1.0);
camera.on <<= camera_on;
camera.exposureInterval <<= camera_ei;
camera.exposureLength <<= camera_el;
camera.sampleInterval <<= camera_si;

//
// Decoration related to recording the outputs.
//

ParamSet pst1;
RecorderFile rft1(NULL, "rft1", ___trfname, ParamSet_stringify(pst1),

pst1);
GridRecorder<float> rft11(NULL, "rft11", "camera.fpaImage",

"Grid<float>", "image", true, (float)0.0, 0.0);
rft11.dr <<= rft1.dr;
rft11.i <<= camera.fpaImage;

//
// Run the simulation.
//

advanceTime(stopTime);
}

// Black code is always the same.
// Blue code is dependent on the problem.
// Green code is administrative in nature.
// Gray code supports optional functionality.

// To run:
// setupwt
// mktr WtDemoRunHand
// WtDemoRunHand

57

The Future of tempus

Continuous Time Dynamics Solver

Dynamic System Composition

Multi-Inputs and Multi-Outputs

Heavy use of stl

Runtime inspection & modification

New GUI

58

Continuous Time Dynamics Solver
• tempus 2006 has been upgraded to include a powerful

DAE solver to provide for the solution of continuous
time dynamics.

• The following pages show a planar seven body problem
called "The Pleiades" as implemented and tested in
tempus 2006.

• The Pleiades problem is specified on pages 245-6 of E.
Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary
Differential Equations I, Nonstiff Problems. Springer-
Verlag, Berlin, 1993. ISBN 3–540–56670–8.

• Zane Dodson, a consultant to MZA, implemented the
tempus continuous time solver and The Pleiades
solution which follows.

59

Pleiades -- GravitationalForce
class GravitationalForce : public tSystem
{
public:

GravitationalForce(const string& name = "", double G = 0.0)
: tSystem(name), G(G), body1("body1"), body2("body2"),
force_on_1_by_2("force_on_1_by_2"), force_on_2_by_1("force_on_2_by_1")

{
add(&body1);
add(&body2);
add(&force_on_1_by_2);
add(&force_on_2_by_1);

}
virtual void respondToOutputRequest(const tOutput*)
{

tV2 displacement = body2.get().position - body1.get().position;
const double distance = norm(displacement);
const tV2 f = (G * body1.get().mass * body2.get().mass * displacement

/ (distance * distance * distance));
force_on_1_by_2.set(f);
force_on_2_by_1.set(-1.0 * f);

}
tInputT<BodyDynamics> body1;
tInputT<BodyDynamics> body2;
tOutputT<tV2> force_on_1_by_2;
tOutputT<tV2> force_on_2_by_1;

private:
double G;

};

60

Pleiades – Body (1 of 2)
class Body : public tSystem
{
public:

Body(const string& name = "", double mass = 0.0, const tV2& r0 = tV2(),
const tV2& rdot0 = tV2())

:
tSystem(name), force("force", true), dynamics("dynamics"), mass(mass),
r0(r0), rdot0(rdot0)

{
add(&force);
add(&dynamics);
r.setContainer(this); // FIXME
rdot.setContainer(this); // FIXME

const double nan = numeric_limits<double>::quiet_NaN();
const tV2 rddot0 = tV2(nan, nan);
r.set(r0, rdot0);
rdot.set(rdot0, rddot0);

tVariable::addDependency(&force, &rdot.residual());
tVariable::addDependency(&r, &dynamics);
tVariable::addDependency(&rdot, &dynamics);
tVariable::addDependency(&rdot.derivative(), &dynamics);

}

...

61

Pleiades – Body (2 of 2)
...
void init() // FIXME
{

tV2 cummulative_force(0.0, 0.0);
for (tInputT<tV2>::iterator i = force.begin(); i != force.end(); ++i)

cummulative_force += *i;
rdot.set(rdot0, cummulative_force / mass);

}
virtual void respondToComputeOde(const tContinuousState* state)
{

if (state == &r)
r.residual().set(rdot.get() - r.derivative().get());

else
{

tV2 cummulative_force(0.0, 0.0);
for (tInputT<tV2>::iterator i = force.begin(); i != force.end(); ++i)

cummulative_force += *i;
rdot.residual().set(cummulative_force - mass * rdot.derivative().get());

}
}
virtual void respondToOutputRequest(const tOutput*)
{

dynamics.set(BodyDynamics(r.get(), rdot.get(), rdot.derivative().get(), mass));
}
tInputT<tV2> force;
tOutputT<BodyDynamics> dynamics;

private:
double mass;
tV2 r0, rdot0;
tContinuousStateT<tV2> r, rdot;

};

62

Pleiades – main (1 of 2)
int main()
{

const double G = 1.0;
tUniverse U("U");

std::vector<Body*> bodies;
bodies.push_back(new Body("body1", 1.0, tV2(3.0, 3.0), tV2(0.0, 0.0)));
bodies.push_back(new Body("body2", 2.0, tV2(3.0, -3.0), tV2(0.0, 0.0)));
bodies.push_back(new Body("body3", 3.0, tV2(-1.0, 2.0), tV2(0.0, 0.0)));
bodies.push_back(new Body("body4", 4.0, tV2(-3.0, 0.0), tV2(0.0, -1.25)));
bodies.push_back(new Body("body5", 5.0, tV2(2.0, 0.0), tV2(0.0, 1.0)));
bodies.push_back(new Body("body6", 6.0, tV2(-2.0, -4.0), tV2(1.75, 0.0)));
bodies.push_back(new Body("body7", 7.0, tV2(2.0, 4.0), tV2(-1.50, 0.0)));

for (int i = 0; i < bodies.size(); ++i)
U.add(bodies[i]);

std::vector< std::vector<GravitationalForce*> > gf(bodies.size(),
std::vector<GravitationalForce*>(bodies.size()));

for (int i = 0; i < bodies.size(); ++i)
for (int j = i+1; j < bodies.size(); ++j)
{

gf[i][j] = new GravitationalForce("", G);
U.add(gf[i][j]);
gf[i][j]->body1.connect(&bodies[i]->dynamics);
gf[i][j]->body2.connect(&bodies[j]->dynamics);
bodies[i]->force.connect(&gf[i][j]->force_on_1_by_2);
bodies[j]->force.connect(&gf[i][j]->force_on_2_by_1);

}
...

63

Pleiades – main (2 of 2)
...

for (int i = 0; i < bodies.size(); ++i)
bodies[i]->init();

for (int k = 0; k <= 300; ++k)
{

cout << U.now();
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().position;
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().velocity;
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().acceleration;
cout << endl;
U.tick(0.01);

}
}

64

Pleiades Solution
The positions of 7 stars traced in a plane

Solution from E. Hairer, S. P. Norsett, and G. Wanner. Solving
Ordinary Differential Equations I, Nonstiff Problems. Springer-
Verlag, Berlin, 1993. ISBN 3–540–56670–8.

Z. Dodson, tempus 2006 – Continous Time DAE Solver

65

The New tempus GUI

