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Computer simulation has become an important tool in many fields of 
endeavor, from science and engineering to computer based training and 
computer animation. Over the years considerable progress has been made in 
tools and methodologies for simulation, but much of this progress has come in 
the form of improvements to a variety of relatively specialized tools, for 
modeling control systems, flexible structures, fluid dynamics, communication 
networks, and so forth. By comparison, relatively little progress had been 
made in tools designed to support interdisciplinary simulation, involving 
interactions among subsystems with qualitatively dissimilar behaviors and 
requiring differing modeling approaches.

tempus is a simulation executive that uses a powerful and flexible block 
diagram-based architecture designed to meet the demands of interdisciplinary 
simulation. Combining ideas from object-oriented programming and hybrid 
simulation, tempus can be used to model just about anything. It has an open 
architecture, which makes it easy to integrate other software into tempus, and 
vice versa. This course provides an introduction to the application of tempus to 
the development of large, complex, and interdisciplinary models.

Course Abstract
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• Explain the motivation for the existence and design of tempus.

• Explain how to use tempus.

• Explain how to develop models with tempus, including developing 
new source code capabilities.

Course Objectives

The terminologies of computer programming and simulation are not always 
standardized.  The terms and concepts used throughout this lesson may have 
broader meanings than that which is used here. 
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• Simulation: the technique of imitating the behavior of some situation 
or system (economic, mechanical, etc.) by means of an analogous 
model, situation, or apparatus, either to gain information more 
conveniently or to train personnel. (Oxford Eng. Dictionary)

• Time-domain modeling: a technique in which the performance of a 
system is simulated by predicting the state of the system as a function 
of time.

• Discrete event-driven modeling: a time-domain simulation technique in 
which the logic of the simulation is primarily governed by specific 
events which occur within the modeled system. 

Modeling and Simulation Concepts
(1 of 2)
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• Composition-based modeling: the process of building software 
models by combining smaller, more fundamental, software 
components.

• Multi-modeling: the use of composition-based modeling in 
interdisciplinary physical modeling problems.

• Variable fidelity modeling: the process of building and employing a 
model which has multiple levels of fidelity.

• Isomorphic: exactly corresponding in form and relations. (Oxford Eng. 
Dictionary)

• Isomorphic modeling: the design and implementation of a model using 
isomorphism as a prevailing guiding principle. 

Modeling and Simulation Concepts
(2 of 2)
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• Software tools meant to assist in the development and use of 
simulations.

• Usually specific to a particular domain.
• One would rarely use the simulation executive if one were not 

interested in the particular domain to which the simulation executive 
applies.

• Generally not appropriate for large simulations.
• Usually composition-based.
• Methods to expand the library of models is limited.
• Component behavior is usually limited to a particular fundamental 

modeling approach.
• Examples: Simulink, Easy5, acslXtreme, Systembuild, SPICE

Simulation Executives
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• A computer programming paradigm in which a 
program is based on a collection of individual 
units, or objects, that act on each other, as 
opposed to a traditional (procedural) paradigm in 
which a program may be seen as a collection of 
functions or procedures, or simply as a list of 
instructions to the computer. Each object is 
capable of receiving messages, processing data, 
and sending messages to other objects. 
(Wikipedia)

Object-Oriented Programming
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Object Oriented Programming
The Benefits

• Benefits of OOP
– Facilitates the application of isomorphism - the programming practice of 

implementing a one-to-one correspondence between segments of code and 
modeled entities.

– Facilitates modularity of both code and data.
– Facilitates the application of polymorphism - the programming practice of using 

the same code for different objects which have common characteristics.
– High-level (executive) code is highly readable.

• Benefits of C++
– Both widespread and highly supported.
– Very efficient (largely because it is based on C).
– Supports the implementation of both high-level (executive) and low-level (math 

and bit-twiddling) code.

There are a lot of advantages to OOP. See Object-Oriented Analysis and 
Design by Grady Booch for more complete information.
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Object Oriented Programming
The Perils (because you can)

• Perils of OOP
– OOP codes are susceptible to over-design -- churning over the design of a particular feature 

without any real benefit (because you can).
– OOP codes are susceptible to over-implementation -- coding an object such that it can do 

any conceivable operation (because you can) when all that is really necessary is meeting 
current requirements. This results in wasted effort and a legacy of untested code because 
many routines are never used.

– As a result of the two previous susceptablities, OOP codes can become spaghetti codes of 
a new sort. This particular form of tangularity results in practically every line of code being a 
reference to code in some other compilation unit. Finding bugs then involves a lot of 
unnecessary hopping around between source files.

– Programmers can mistakenly rely on the OOP model as a substitute for true innovation 
(because you can) .

• Perils of C++
– C++ arrays are inflexible (especially multi-dimensional arrays). For mathematical codes, this 

results in having to implement a substitute.
– C++ pointers are dangerous. Memory leaks and dangling pointers are common.
– C++ templates can be bad. Don’t use them unless you know what you are doing.
– C++ has obtuse syntax. Low-level code can be difficult to read.

Despite these dangers, using OOP within C++ is probably the most flexible and powerful 
contemporary approach to developing a complex application which is both portable and 
efficient.
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Base Classes and Virtual Methods
Classes, base classes and virtual methods are all standard 
terms used in object-oriented programming.

A class is language-level construct which can be used to 
encapsulate a well-defined software representation of a specific 
category of objects, including both its data members and its 
behavior.

A class can inherit attributes (data and/or behavior) from one or 
more other classes, called its base classes.  Some classes, like 
System in tempus, are specifically designed to be used as base 
classes.

Virtual methods are “stub” functions defined in a base class 
which can be re-defined by derived classes.  Virtual methods 
are used to define standardized interfaces for customizable 
behaviors.
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C++ Templates
• Templates are a way of implementing C++ functions 

and classes in a type-neutral kind of way.
• The Type of interest is specified to the Template code 

at compile time and the appropriate code is generated 
taking into account fairly generic aspects of the 
underlying type.

• This is how one might implement a vector of integers 
with essentially the same code as they might implement 
a vector of floats.

• Templates can also be used to specify other compile-
time attributes.
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C++ Code
Base class:

class TRect {
public:

// data members
short fTop;
short fLeft;
short fBottom;
short fRight;
// member functions
virtual short Area(void);
Boolean PointInRect(Point thePt);

};

Class which uses inheritance:

class TRoundRect : public TRect { 
protected:

// added data members
short fHOval;
short fVOval;
// override the area member function
virtual short Area(void);

};

Template class:

template<class T> class vector {
T* v;
int sz;

public:
vector (int);
T& operator[] (int);
T& elem(int i) { return v[i]; }
// ...

};

Using Classes:

int top, left, bottom, right;
...
TRect r(top, left, bottom, right);
TRoundRect rr(top, left, bottom, right);

vector<float> vf(5);
vf[0] = (r.area() + rr.area())/2.0;

vector<int> vi(4);
vi[0] = top;
vi[1] = left;
vi[2] = bottom;
vi[3] = right;
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The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution 

tempus source form
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tdemo1 Example
• To provide 

context, we'll go 
to a short 
demonstration the 
creation, 
execution, 
examination, and 
manipulation of a 
simple tempus 
user application.
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tempus Process Flow

system editor

runset editor

• Construct & modify 
tempus Systems

• Create Atomic 
System templates

programming

• Visualize and analyze 
results

• Write Atomic Systems
• Debug applications

• Create test cases
• Devise parametric 

studies

analysis

The process supports 
tempus System 
development, 

debugging, and 
analysis
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#include "tempus.h"

#include "TopLevel.h" Notional Generated Code

int main(int argc, char* argv[])
{

Universe u(NULL, "u");
int p1 = 2;
double p2 = 3.1415;
for (iloop=0; iloop<nloop; iloop++)
{

double p3 = iloop * p1 * p2;
TopLevel t(u, "t", p1, p2, p3);
Recorder r(u, "r");
r.i <== t.ss.o;
u.advanceTime(stopTime);

}
}

class TopLevel : public System {
public:

int p1;
double p2;
double p3;
Subsystem ss;
TopLevel(System* p, char* n, int _p1,...) :

System(p, n),
p1(_p1), p2(_p2), p3(_p3), ss(p1, p2, p3)

{
...
}; ...

}

tempus User Applications
tempus kernel

Classes

Universe

System
Input<T>

Output<T>

tempus Utilities

Recording

Numerical Library

User Libraries

Libraries of 
Systems

Utility Code

system editor

runset editor

User Code
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The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution 

tempus source form
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tempus Visual Editor

The tve window used to set up and execute 
tempus simulations.

tre – tempus
runset editor

The tve window used to create, configure, and 
edit tempus Systems. 

tse – tempus
system editor

The graphical user interface (GUI) through 
which the user constructs tempus models and 
sets up and executes tempus simulations. 
Given user inputs, the tve generates code 
which is compiled and linked with user-written 
code to create and execute user applications. 

tve – tempus 
visual editor

DescriptionConcept
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tve & tse
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tve & tre
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The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution 

tempus source form



28

Variables, Types, and Names
• Systems, Inputs, Outputs, and Parameters are 

implemented as programming variables and all have 
types and names.

• Type refers to the particular data type of the entity. In 
this usage, type and class are nearly synonymous.
– All Systems are of some Type which must be derived from class

System. So all Systems are classes. 
– All Inputs and Outputs have a type, but not through inheritance. 

Rather, Inputs and Outputs get their type through a template 
argument. The type can be just about any valid C++ type, but it 
must support a few standard operations. The GUI hides the details 
concerning the use of templates.

– Parameters are simple variables of a user-specified type.  The type
which can be simple, such as float or int or more complex, such 
as an arbitrary class.  The type can be just about any valid C++ 
type, but it must support a few standard operations.

• Name refers to the name of the particular variable 
within the context that it resides.
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Types and names in the tve

Types Names Values
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tempus Classes

A top-level executive object which controls the 
order of System execution and the passage of 
time.

Universe

The primary mechanism through which a System
can effect other Systems.

Output<T>

The primary mechanism through which a System
is affected by other Systems.

Input<T>

The base class for the fundamental building 
block of tempus applications. Specific Systems
can be automatically generated or user-written. 
Systems are configured by their Parameters and 
contain Inputs and Outputs in facilitate time-
domain interfaces with other Systems.

System

DescriptionClass



31

Categories of Systems

A System which contains all other Systems in a 
particular tempus user application.

Top-level 
System

A System contained in another System. Almost all 
Systems are Subsystems because all Systems, 
except the very top-level System, is contained by 
another.

Subsystem

A System written to carry-out computations of 
specific interest. Ultimately, all of the meaningful 
computation of a tempus user application is done 
by an Atomic System.

Atomic 
System

A System composed of one or more Systems. 
Composite Systems are typically (but don't have to 
be) generated by the tempus system editor. 

Composite
System

DescriptionConcept
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tempus Parametric Concepts

The collection of information which specifies the 
Parameter values for a set of user application 
executions. The Runset specifies the Parameter
values for the Top-Level System which Outputs
are to be recorded.

Runset

The mechanism through which Systems are 
configured.  The values of Parameters are 
provided to Systems through constructor 
arguments, so they are only effective in 
specifying static initialization inputs. Parameters
of Subsystems are often specified by 
expressions involving Parameters of the System
that contains them.

Parameter

DescriptionConcept
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tempus Concepts
System Parameters
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tempus Concepts
System Parameters Flow Down from Containing Systems
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tempus Concepts
Runsets

Runsets…
• define the values of 

all parameters which 
the model-builder has 
“flowed-up” to the 
user. 

• provide a 
configuration 
management tool for 
defining the inputs of 
a run.

• are used to set up 
parametric studies, 
allowing parameters 
to be changed 
systematically.

• definitions help to 
define how work is 
distributed across 
multiple processors.
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tempus concepts
Block Parameters Flow Down from Runset
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Concepts Not Detailed in This Course

Another class which helps implement 
Recallability.

SaveVariable<T>

The class through which Recallability is 
implemented.

Recallable<T>

The mechanism through which Systems 
can request the values of their input for 
some time in the past.

Recallability

DescriptionConcept
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The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution 

tempus source form
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tempus Concepts
Inputs, Outputs, and Connectivity
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Input and Output Types
• Inputs and Outputs are template-typed 

classes.
• Inputs and Outputs can be of nearly any 

valid C++ type. 
• Connections are only made between two 

entities of the same type.
• Provisions have been made to provide 

automatic conversions between types 
which are nearly compatible.
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Three Types of Connections

Subsystem Outputs can become 
Outputs of the containing 
Composite System.

Subsystem Output
to

Composite System Output
o <<= ss.o

Composite System Inputs are 
routed to its Subsystem Inputs.

Composite System Input
to

Subsystem Input
ss.i <<= i

The most intuitive type of 
connection feeds a Subsystem's
Output to a Subsystem's Input.

Subsystem Output
to

Subsystem Input
ss1.i <<= ss2.o

DescriptionConnection
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Default Behaviors

Default values for an Input can be 
specified so that the Input does not have 
to be externally connected.

Default Value 
assigned to

Input

Default values for System Outputs can 
be specified to provide an output value 
in the situation that a Subsystem Output
is not eventually connected to it.

Default Value 
assigned to

System Output

DescriptionConcept
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Connections in the tve

Subsystem Output
to

Subsystem Input
switchvf.v0 <<= limitvf.vout

Subsystem Output
to

Subsystem Input
limitvf.v <<= sine.v

Subsystem Output
to

Subsystem Input
switchvf.v1 <<= sine.v

Composite System Input
to

Subsystem Input
switchvf.flag <<= flag

Subsystem Output
to

Composite System Output
v <<= switchvf.v

Default Value
(not used because

it is connected)

Default Values
not used used

Note: A Subsystem Input cannot have two connections
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Connection-driven Execution

System
respondToWarning respondToInputWarning

attempt
to

access

attempt
to

modify

value

respondToWarning

value

Input Output

Universemain

scheduleNotice
scheduleEvent
cancelEvent

respondToChangedInputs
respondToScheduledEvent

advanceTime

Output Input

respondToOutputRequest
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System Virtual Methods
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

• Depending on the desired system behavior, the Atomic System
coder writes a System-specific implementation of one or more 
virtual methods.

• Composite Systems do not implement the virtual methods 
because the behavior of Composite Systems is governed by the 
behavior its Subsystems.

• Each of the virtual methods have default logic so that Atomic 
Systems do not have to overload methods unrelated to its 
desired execution behavior.
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Input-Driven Logic
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

•respondtoInputWarning(InputBase*) warns a 
System that one of its Inputs is about to be changed.

• Before any System changes an Output which is 
connected to another System's Input, the Input's System's
respondtoInputWarning(InputBase*) is called.

•respondtoChangedInputs() notifies a System that 
one or more of it's inputs has been changed.



47

Output-Driven Logic
(Lazy Evaluation)

class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

...
}

• When a System accesses the value of an Input which is 
connected to another System's Output, that Output's 
System's respondtoOutputRequest(OutputBase)
is called.
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Event Driven Logic
class System : public SystemNode
{

protected:
virtual void respondToInputWarning(InputBase* input);
virtual void respondToChangedInputs();
virtual void respondToOutputRequest(const OutputBase* /*output*/);
virtual void respondToScheduledEvent(const Event& /*event*/);

private:
EventId scheduleEvent(double delay, char* descriptor="", void* info=NULL)

...
}

• A System can exercise strong control over it's 
execution by scheduling Events for itself by invoking 
the scheduleEvent(...) method.

• After the specified amount of time has passed, the 
scheduler called the System's
respondToScheduledEvent(const Event&)
method. 
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Complex Producer-Consumer Models

At time t, the receiver asks 
the next component 
upstream to tell it about the 
light incident upon it.

Each intervening component 
asks the next component 
upstream to tell it about what 
light is incident upon it.   

Each light source must be 
prepared to describe the light 
transmitted from it using one 
or more “waves”. ----------------

It must provide certain info 
about itself: aperture size 
and location, field of view, 
wavelengths sensed, etc.

It must provide information 
about receiver and the optical 
path between it and the 
receiver.

It must take into account the 
information provided about 
receiver and the optical path 
between it and the receiver.

The source constructs the first 
wave, then returns. -------------
----------------------------------------
--------------------------------

Each intervening component 
operates on the wave, then 
returns. -----------------------------
-----------------

The receiver maps the 
wave to its detector plane.--
-------------------------------------
------

The receiver then asks the 
next component upstream 
for the next wave incident 
upon it.---------------------------

Each intervening component 
asks the next component 
upstream for the next wave 
incident upon it.   

When the source has no more 
waves to send, it returns a 
NULL.-------------------------------
-------------------------

Each intervening component 
then returns a NULL. -----------
----------------------------------------
-----------------------------------

When the receiver receives 
a NULL it knows it has  
received all the waves 
incident upon it at time t.

The source then checks 
whether it needs to send  any 
more waves. ----------------------
--------------------------------------

Inputs and Outputs can be of nearly any valid C++ type.  The extreme 
flexibility of connection-driven execution combined with sophisticated 
Input-Output types, can provide extremely complex System interactions.
MZA's wave-optics code is named after its fundamental interface type, 
WaveTrain, which provides a two-way dialog between optical components.
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The tempus Paradigm

Overview

tempus visual editor

tempus concepts

Connection-driven execution 

tempus source form
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Code Generation Strategy
• Atomic Systems are built by the tve as System class stubs.

– The programmer is expected to implement virtual methods which define the System’s 
behavior.

– Because many systems have common features, inheritance and polymorphism is used a lot.

• Composite Systems are coded as complete Systems
– Parameters are constructor arguments.
– Inputs and Outputs are member objects.
– Subsystems are declared and initialized using expressions involving the parameters of the 

system.
– Subsystems are connected using the simple overloaded operator <<=.
– Miscellaneous code handles default unconnected inputs.

• Runsets are coded as the main program.
– The code contains explicit loops for loop variable.
– The run variables and top-level system parameters are declared and set. Run variables and 

system parameters which are dependent on loop variables inside the appropriate loops.
– The top-level system is constructed using the system parameters.
– Recording systems are constructed and connected.
– Each run is executed with a call to advanceTime(…).
– There is miscellaneous code which takes care of runset monitoring and setting up the output 

trf file.
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tempus System Examples
DoubleGain : A Composite System

class DoubleGain : public System {
private:

Gain gain1;
Gain gain2;

public:
Input<float> u;
Output<float> y;
DoubleGain(SystemNode* parent, char* name,

float _k1, float _k2) :
System(this,name),
gain1(this,"gain1",_k1),
gain2(this,"gain2",_k2),
u(this,"u"),y(this,"y")

{
gain1.u <<= u;
gain2.u <<= gain1.y;
y <<= gain2.y;

}
};
Composite Systems’ code is usually generated by the GUI.

Gain : An Atomic System

class Gain : public System
{
private:

float k;
public:

Input<float> u;
Output<float> y;
Gain(SystemNode* parent,

char* name,
float _k) : 

System(this, name),
k(_k), u(this, "u"), y(this, "y") {}

private:
void respondToInputWarning(InputBase* input)
{

y.warnReferencors();
}
void respondToOutputRequest()
{

y=k*u;
}

};

Atomic Systems' code is written by hand.
In this case, the code in blue is all the
logic that was added. The GUI provided
the rest in the form of a template.
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tempus SquareWave Example
Atomic system SquareWave uses event-driven logic.

class SquareWave : public System {
private:

float pulseLength;
float pulseInterval;

public:
Output<float> y;
SquareWave(SystemNode parent, char* name,

float _pulseLength, 
float _pulseInterval,
float _delay) :

SystemNode(parent, name),
pulseLength(_pulseLength),
pulseInterval(_pulseInterval),
y(this, "y")

{
scheduleEvent(_delay,“begin pulse”);

}
private:

void respondToScheduledEvent(const Event& event)
{

if (event == "beginPulse")
{

y = 1.0;
scheduleEvent(pulseLength, “end pulse”);
scheduleEvent(pulseInterval, “begin pulse”);

}
else if (event == ”end pulse”))
{

y = 0.0;
}

}
};

The code in blue was written by the System 
implementer. The rest of the code was 
provided by the GUI as a template.
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tempus Main Program Example
main()
{

SquareWave sw(0.1,0.5,0); // construct a Square Wave.
Gain g(2.0); // construct a Gain
Sampler<float> s(); // construct a Sampler.
g.u << = sw.y; // connect Gain’s input to the SquareWave’s output
s.u <<= g.y; // connect the Sampler’s input to the Gain’s output
advanceTime(100.0); // advance virtual time 100 seconds

}

§ The main program is usually generated by the GUI, but it can be written by hand just as well.
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tempus Code is Readable
lEach composite system declares and initializes its subsystems:

pointsource(this, "pointsource", wavelength, 1.0e6, 0.0, 0.0),
transversevelocity1(this, "transversevelocity1", -wind, 0.0, 0.0, 0.0),
transversevelocity3(this, "transversevelocity3", wind, 0.0, 0.0, 0.0),
atmosphericpath1(this, "atmosphericpath1",       

AcsAtmSpec(wavelength,nscreen,clear1Factor,hPlatform,hTarget,range),
atmoSeed, propnxy, propdxy, 1.8, 0.05,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
propdxy, 0.0, 0.0, 0),

camera1(this, "camera1", 1.0, wavelength, wavelength, apdiam/propdxy,
propdxy, 64, wavelength/apdiam, 0.0),

simplefieldsensor1(this, "simplefieldsensor1", wavelength, apdiam/propdxy, propdxy),      
telescope1(this, "telescope1", range, apdiam/2.0, 0.0),
incomingsplitter1(this, "incomingsplitter1"),

l Then the subsystems inputs and outputs are connected:
simplefieldsensor1.incident <<= incomingsplitter1.incomingTransmitted2;
camera1.incident <<= incomingsplitter1.incomingTransmitted;
incomingsplitter1.incomingIncident <<= telescope1.incomingTransmitted;
telescope1.incomingIncident <<= transversevelocity3.incomingTransmitted;
transversevelocity3.incomingIncident <<= atmosphericpath1.incomingTransmitted;
atmosphericpath1.incomingIncident <<= transversevelocity1.incomingTransmitted;
transversevelocity1.incomingIncident <<= pointsource.transmitted;

l Then the simulation is run:
advanceTime(stopTime);

blue names are systems
green names are inputs
red names are outputs

cyan names are regular variables
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A Complete tempus Run
#include "tempus.h“
#include "Recorders.h“
#include "FileSys.h"

#include "PointSource.h"
#include "AtmoPath.h"
#include "Telescope.h"
#include "Camera.h"

#ifndef NO_TEMPUS_SMF_MONITOR
#include "TempusStatusSMF.h"

#endif

main(int argc, char* argv[])
{
//
// Decoration related to monitoring the system during the run.
//
#ifndef NO_TEMPUS_SMF_MONITOR

double stopTime = 0.0050;
char *___outfile = "WtDemoRunHand.trf";
char *___trfname;
char *___smfname;
parseName(argc, argv, ___outfile, &___smfname, &___trfname, stopTime);
TempusStatusSMFWriter ___smfWriter(___smfname, ___trfname, "", 1);
setCurrentSMF(&___smfWriter);

#endif
Universe ut1("Hand");
//
// Construction of all the systems. Variables could be used in the parameters
// below rather than the constants.
//

PointSource pointsource(NULL, “ps", 1.0e-06, 1.0e+06, 0.0, 0.0);
AtmoPath atmosphericpath(NULL, “ap",

AcsAtmSpec(1.0e-06,10,2.0,2413.0,2728.0,52600.0),
-765432189, 256, 0.02, 1.8, 0.05,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
0.02, 0.0, 0.0, 0);

Telescope telescope(NULL, “tel", 52600.0, 1.5/2.0, 0.0);
Camera camera(NULL, “cam", 1.0, 1.0e-06, 1.0e-06, 1.5/0.02, 0.02, 64,

1.0e-06/1.5, 0.0);

//
// Connection of the systems.
//

atmosphericpath.incomingIncident <<= pointsource.transmitted;
telescope.incomingIncident <<= atmosphericpath.incomingTransmitted;
camera.incident <<= telescope.incomingTransmitted;

//
// Construction and connection of non-connected inputs. 
//

Output<bool> camera_on(&camera, "cam_on", true);
Output<double> camera_ei(&camera, "cam_ei", 1.0e-3);
Output<double> camera_el(&camera, "cam_el", 1.0e-6);
Output<double> camera_si(&camera, "cam_si", -1.0);
camera.on <<= camera_on;
camera.exposureInterval <<= camera_ei;
camera.exposureLength <<= camera_el;
camera.sampleInterval <<= camera_si;

//
// Decoration related to recording the outputs.
//

ParamSet pst1;
RecorderFile rft1(NULL, "rft1", ___trfname, ParamSet_stringify(pst1), 

pst1);
GridRecorder<float> rft11(NULL, "rft11", "camera.fpaImage", 

"Grid<float>", "image", true, (float)0.0, 0.0);
rft11.dr <<= rft1.dr;
rft11.i <<= camera.fpaImage;

//
// Run the simulation.
//

advanceTime(stopTime);
}

// Black code is always the same.
// Blue code is dependent on the problem.
// Green code is administrative in nature.
// Gray code supports optional functionality.

// To run:
// setupwt
// mktr WtDemoRunHand
// WtDemoRunHand
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The Future of tempus

Continuous Time Dynamics Solver

Dynamic System Composition

Multi-Inputs and Multi-Outputs

Heavy use of stl

Runtime inspection & modification

New GUI
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Continuous Time Dynamics Solver
• tempus 2006 has been upgraded to include a powerful 

DAE solver to provide for the solution of continuous
time dynamics.

• The following pages show a planar seven body problem 
called "The Pleiades" as implemented and tested in 
tempus 2006.

• The Pleiades problem is specified on pages 245-6 of E. 
Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary 
Differential Equations I, Nonstiff Problems. Springer-
Verlag, Berlin, 1993. ISBN 3–540–56670–8.

• Zane Dodson, a consultant to MZA, implemented the 
tempus continuous time solver and The Pleiades 
solution which follows.
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Pleiades -- GravitationalForce
class GravitationalForce : public tSystem
{
public:

GravitationalForce(const string& name = "", double G = 0.0)
: tSystem(name), G(G), body1("body1"), body2("body2"),
force_on_1_by_2("force_on_1_by_2"), force_on_2_by_1("force_on_2_by_1")

{
add(&body1);
add(&body2);
add(&force_on_1_by_2);
add(&force_on_2_by_1);

}
virtual void respondToOutputRequest(const tOutput*)
{

tV2 displacement = body2.get().position - body1.get().position;
const double distance = norm(displacement);
const tV2 f = (G * body1.get().mass * body2.get().mass * displacement

/ (distance * distance * distance));
force_on_1_by_2.set(f);
force_on_2_by_1.set(-1.0 * f);

}
tInputT<BodyDynamics> body1;
tInputT<BodyDynamics> body2;
tOutputT<tV2> force_on_1_by_2;
tOutputT<tV2> force_on_2_by_1;

private:
double G;

};
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Pleiades – Body (1 of 2)
class Body : public tSystem
{
public:

Body(const string& name = "", double mass = 0.0, const tV2& r0 = tV2(),
const tV2& rdot0 = tV2())

:
tSystem(name), force("force", true), dynamics("dynamics"), mass(mass),
r0(r0), rdot0(rdot0)

{
add(&force);
add(&dynamics);
r.setContainer(this); // FIXME
rdot.setContainer(this); // FIXME

const double nan = numeric_limits<double>::quiet_NaN();
const tV2 rddot0 = tV2(nan, nan);
r.set(r0, rdot0);
rdot.set(rdot0, rddot0);

tVariable::addDependency(&force, &rdot.residual());
tVariable::addDependency(&r, &dynamics);
tVariable::addDependency(&rdot, &dynamics);
tVariable::addDependency(&rdot.derivative(), &dynamics);

}

...
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Pleiades – Body (2 of 2)
...
void init() // FIXME
{

tV2 cummulative_force(0.0, 0.0);
for (tInputT<tV2>::iterator i = force.begin(); i != force.end(); ++i)

cummulative_force += *i;
rdot.set(rdot0, cummulative_force / mass);

}
virtual void respondToComputeOde(const tContinuousState* state)
{

if (state == &r)
r.residual().set(rdot.get() - r.derivative().get());

else
{

tV2 cummulative_force(0.0, 0.0);
for (tInputT<tV2>::iterator i = force.begin(); i != force.end(); ++i)

cummulative_force += *i;
rdot.residual().set(cummulative_force - mass * rdot.derivative().get());

}
}
virtual void respondToOutputRequest(const tOutput*)
{

dynamics.set(BodyDynamics(r.get(), rdot.get(), rdot.derivative().get(), mass));
}
tInputT<tV2> force;
tOutputT<BodyDynamics> dynamics;

private:
double mass;
tV2 r0, rdot0;
tContinuousStateT<tV2> r, rdot;

};
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Pleiades – main (1 of 2)
int main()
{

const double G = 1.0;
tUniverse U("U");

std::vector<Body*> bodies;
bodies.push_back(new Body("body1", 1.0, tV2( 3.0,  3.0), tV2( 0.0,  0.0)));
bodies.push_back(new Body("body2", 2.0, tV2( 3.0, -3.0), tV2( 0.0,  0.0)));
bodies.push_back(new Body("body3", 3.0, tV2(-1.0,  2.0), tV2( 0.0,  0.0)));
bodies.push_back(new Body("body4", 4.0, tV2(-3.0,  0.0), tV2( 0.0, -1.25)));
bodies.push_back(new Body("body5", 5.0, tV2( 2.0,  0.0), tV2( 0.0,  1.0)));
bodies.push_back(new Body("body6", 6.0, tV2(-2.0, -4.0), tV2( 1.75, 0.0)));
bodies.push_back(new Body("body7", 7.0, tV2( 2.0,  4.0), tV2(-1.50, 0.0)));

for (int i = 0; i < bodies.size(); ++i)
U.add(bodies[i]);

std::vector< std::vector<GravitationalForce*> > gf(bodies.size(),
std::vector<GravitationalForce*>(bodies.size()));

for (int i = 0; i < bodies.size(); ++i)
for (int j = i+1; j < bodies.size(); ++j)
{

gf[i][j] = new GravitationalForce("", G);
U.add(gf[i][j]);
gf[i][j]->body1.connect(&bodies[i]->dynamics);
gf[i][j]->body2.connect(&bodies[j]->dynamics);
bodies[i]->force.connect(&gf[i][j]->force_on_1_by_2);
bodies[j]->force.connect(&gf[i][j]->force_on_2_by_1);

}
...
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Pleiades – main (2 of 2)
...

for (int i = 0; i < bodies.size(); ++i)
bodies[i]->init();

for (int k = 0; k <= 300; ++k)
{

cout << U.now();
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().position;
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().velocity;
for (int i = 0; i < bodies.size(); ++i)

cout << "\t" << bodies[i]->dynamics.get().acceleration;
cout << endl;
U.tick(0.01);

}
}
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Pleiades Solution
The positions of 7 stars traced in a plane

Solution from E. Hairer, S. P. Norsett, and G. Wanner. Solving 
Ordinary Differential Equations I, Nonstiff Problems. Springer-
Verlag, Berlin, 1993. ISBN 3–540–56670–8.

Z. Dodson, tempus 2006 – Continous Time DAE Solver
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The New tempus GUI


