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Overview
• We will present a simple step-by-step method for 

choosing mesh spacings and dimensions for any wave 
optics simulation problem.  To the best of our knowledge 
this has never been done before.

• This method addresses both modeling correctness and 
computational efficiency, while leaving the user enough 
flexibility to deal with additional constraints.

• The method is amenable to automated implementation 
and well-suited for use with automated optimization 
techniques.

• This work has been funded in part by the Air Force 
Research Laboratory and the Airborne Laser Program.
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Fourier optics

One-step DFT propagation

Two-step DFT propagation

Background
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Strictly valid only for propagation through 
vacuum or ideal dielectric media
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One-Step DFT Propagation
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One-Step DFT Propagation
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One-Step DFT Propagation

z1 z2

Without loss of generality, we can decompose 
scalar optical fields into sets of complex rays.

Using those rays, we can obtain constraints on 
the the mesh spacings and dimensions directly 
from the geometry of the problem.
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One-Step DFT Propagation
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z1 z2

One-Step DFT Propagation
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z1 z2

One-Step DFT Propagation
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Two-Step DFT Propagation

Some authors make a distinction between two different 
algorithms for two-step DFT propagation: 

(1) Two concatenated one-step DFT propagations, as we have 
just described.

(2) Frequency domain propagation, i.e.

Perform a DFT

Multiply by a kernel

Perform an inverse DFT

However it turns out that (2) can be regarded as a special case 
of (1) where the two propagation steps are in opposite directions.
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Two-Step DFT Propagation

For propagations between the same pair of limiting apertures two-
step propagation is much less efficient than one-step propagation.

So why use two-step propagation?

Answer:

(a) The mesh spacings at the initial and final planes can be chosen 
independently.

(b) It works well for propagations between any two planes along the 
optical path.  (For one-step propagation N blows up for small Δz.) 
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation
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Two-Step DFT Propagation

works for
z<z1 and z>z2

z1 < zitminner
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z1 z2

zitmouter
< z1< z2

Two-Step DFT Propagation
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z1 z2
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Two-Step DFT Propagation
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z1 z2

zitmouter
< z1< z2

Two-Step DFT Propagation
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zitmouter
< z1< z2

Two-Step DFT Propagation

( ) 2
2

1
1

δδδ
outeritm

outeritm

outeritm

outeritm

zz
zz

zz
zz

z
−

−
=

−

−
=

zitmouter



28

works for
z1<z<z2

zitmouter
< z1< z2

Two-Step DFT Propagation

zitmouter
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Two-Step DFT Propagation

works for
all z 

(combined) 
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Two-Step DFT Propagation
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A General Method for Choosing Mesh 
Spacings and Mesh Dimensions

We now have a method for choosing mesh 
spacings and dimensions for the special case 
of propagation through vacuum or ideal 
dielectric media, given two limiting apertures.

Next, we will present a simple step-by-step 
procedure to reduce any wave optics simulation 
problem, including propagation through optical 
systems and aberrating media, to one or more 
instances of the special case.
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Step 1.  Remove any lenses and mirrors

To first order, ordinary lenses and mirrors operate only on the overall 
tilt and/or curvature of wavefronts passing through the optical system.

For our purposes these effects can be removed picking some one 
plane to start from, e.g. the source plane, and then replacing all 
apertures and aberrating effects with their images, as seen through the 
intervening lenses and mirrors. 
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Step 2.  Identify two or more limiting 
apertures from a priori information.

sensor

image plane

beam waistA collimated source can 
be thought of as having a 
second  limiting aperture 
at or near the beam waist.

For an uncollimated source, 
the receiver entrance pupil 
provides a second limiting 
aperture, and the receiver 
FOV may provide a third, at 
the image plane. 



34

Step 3.  Enlarge the apertures as 
needed to account for blurring

Blurring effects due to diffraction or propagation through 
aberrating media have the effect of enlarging the apparent size of 
the source aperture, as seen from the receiver, and vice versa.
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Step 3a. In some cases, it may be useful to 
break the path into two or more sections.

Blurring effects vary with position, changing the sizes of the blurred apertures.  For 
example, at the source the set of rays to be modeled is limited by the unblurred
source aperture and the blurred receiver aperture, while  at the receiver it is limited 
by the unblurred receiver aperture and the blurred source aperture. 

Section 1 Section 2 Section 3 Section 4
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D1
D2

z1 z2

Δz

These two apertures can be the same as two of the limiting 
apertures identified earlier, but they need not be; instead they
could be placed at different planes, chosen for convenience.

They should be chosen such that they both capture all light of 
interest and, to keep N reasonable, little light not of interest.

Step 4.  Select exactly two apertures to use 
in choosing spacings and dimensions
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Step 5.  Choose the mesh spacings and 
dimensions to satisfy the following:
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Step 6. Compute the locations of two 
intermediate planes to be used in 

two-step DFT propagations:

1
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The inner intermediate plane lies inside the two aperture 
planes and is used for propagations outside those planes. 

The outer intermediate plane lies outside the two aperture 
planes and is used for propagations inside those planes
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Done!

z1 z2zitminnerzitmouter

D1 D2
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Summary and Conclusions
• We have presented a simple step-by-step method for choosing mesh 

spacings and dimensions for wave optics simulation.

• This method addresses both modeling correctness and 
computational efficiency, while leaving the user enough flexibility to 
deal with additional constraints.

• The method is amenable to automated implementation and well-suited 
for use with automated optimization techniques.

• Caveat: there are other important issues that must be taken into
account in order to obtain correct results using wave optics 
simulation.

• For more information:
– read the paper in the Proceedings
– download our short course on Modeling and Simulation of Beam Control 

Systems, http://www.mza.com/doc/MZADEPSBCSMSC2004
– or contact me, Steve Coy, coy@mza.com.

http://www.mza.com/doc/MZADEPSBCSMSC2004
mailto:coy@mza.com
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